IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v53y2013i1p266-272.html
   My bibliography  Save this article

Long-term behavior of stochastic interest rate models with jumps and memory

Author

Listed:
  • Bao, Jianhai
  • Yuan, Chenggui

Abstract

The long-term interest rates, for example, determine when homeowners refinance their mortgages in mortgage pricing, play a dominant role in life insurance, decide when one should exchange a long bond to a short bond in pricing an option. In this paper, for a one-factor model, we reveal that the long-term return t−μ∫0tX(s)ds for some μ≥1, in which X(t) follows an extension of the Cox–Ingersoll–Ross model with jumps and memory, converges almost surely to a reversion level which is random itself. Such a convergence can be applied in the determination of models of participation in the benefit or of saving products with a guaranteed minimum return. As an immediate application of the result obtained for the one-factor model, for a class of two-factor model, we also investigate the almost sure convergence of the long-term return t−μ∫0tY(s)ds for some μ≥1, where Y(t) follows an extended Cox–Ingersoll–Ross model with stochastic reversion level −X(t)/(2β) in which X(t) follows an extension of the square root process. This result can be applied to, e.g., how the percentage of interest should be determined when insurance companies promise a certain fixed percentage of interest on their insurance products such as bonds, life-insurance and so on.

Suggested Citation

  • Bao, Jianhai & Yuan, Chenggui, 2013. "Long-term behavior of stochastic interest rate models with jumps and memory," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 266-272.
  • Handle: RePEc:eee:insuma:v:53:y:2013:i:1:p:266-272
    DOI: 10.1016/j.insmatheco.2013.05.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668713000838
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2013.05.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Griselda Deelstra & Fred Delbaen, 1997. "Long‐term returns in stochastic interest rate models: different convergence results," Applied Stochastic Models and Data Analysis, John Wiley & Sons, vol. 13(3‐4), pages 401-407, September.
    2. Cassola, N. & Luis, J.B., 2001. "A Two-Factor Model of the German Term Structure of Interest Rates," Papers 46, Quebec a Montreal - Recherche en gestion.
    3. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    4. Deelstra, G. & Delbaen, F., 1995. "Long-term returns in stochastic interest rate models," Insurance: Mathematics and Economics, Elsevier, vol. 17(2), pages 163-169, October.
    5. Griselda Deelstra & Freddy Delbaen, 1998. "Convergence of discretised stochastic interest rate: processes with stochastic drift term," ULB Institutional Repository 2013/7584, ULB -- Universite Libre de Bruxelles.
    6. Chan, K C, et al, 1992. "An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-1227, July.
    7. Teresa Corzo Santamaria & E. S. Schwartz, 2000. "Convergence within the EU: Evidence from Interest Rates," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 29(2), pages 243-266, July.
    8. Griselda Deelstra & Freddy Delbaen, 1995. "Long-term returns in stochastic interest rate models," ULB Institutional Repository 2013/7578, ULB -- Universite Libre de Bruxelles.
    9. G. Deelstra & F. Delbaen, 1998. "Convergence of discretized stochastic (interest rate) processes with stochastic drift term," Applied Stochastic Models and Data Analysis, John Wiley & Sons, vol. 14(1), pages 77-84, March.
    10. Gray, Stephen F., 1996. "Modeling the conditional distribution of interest rates as a regime-switching process," Journal of Financial Economics, Elsevier, vol. 42(1), pages 27-62, September.
    11. Benhabib, Jess, 2004. "Interest Rate Policy in Continuous Time with Discrete Delays," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 36(1), pages 1-15, February.
    12. Griselda Deelstra, 2000. "Long-term returns in stochastic interest rate models: applications," ULB Institutional Repository 2013/7590, ULB -- Universite Libre de Bruxelles.
    13. Zhao, Juan, 2009. "Long time behaviour of stochastic interest rate models," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 459-463, June.
    14. Fabio Mercurio & Wolfgang J. Runggaldier, 1993. "Option Pricing For Jump Diffusions: Approximations and Their Interpretation," Mathematical Finance, Wiley Blackwell, vol. 3(2), pages 191-200, April.
    15. Bardhan, Indrajit & Chao, Xiulu, 1993. "Pricing options on securities with discontinuous returns," Stochastic Processes and their Applications, Elsevier, vol. 48(1), pages 123-137, October.
    16. Longstaff, Francis A & Schwartz, Eduardo S, 1992. "Interest Rate Volatility and the Term Structure: A Two-Factor General Equilibrium Model," Journal of Finance, American Finance Association, vol. 47(4), pages 1259-1282, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan de Kort, 2018. "A note on the long rate in factor models of the term structure," Mathematical Finance, Wiley Blackwell, vol. 28(2), pages 656-667, April.
    2. Zhang, Zhenzhong & Tong, Jinying & Hu, Liangjian, 2016. "Long-term behavior of stochastic interest rate models with Markov switching," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 320-326.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rogers, L. C. G. & Stummer, Wolfgang, 2000. "Consistent fitting of one-factor models to interest rate data," Insurance: Mathematics and Economics, Elsevier, vol. 27(1), pages 45-63, August.
    2. Federico Flore & Giovanna Nappo, 2018. "A Feynman-Kac type formula for a fixed delay CIR model," Papers 1806.00997, arXiv.org.
    3. Zhang, Zhenzhong & Tong, Jinying & Hu, Liangjian, 2016. "Long-term behavior of stochastic interest rate models with Markov switching," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 320-326.
    4. Griselda Deelstra, 2000. "Long-term returns in stochastic interest rate models: applications," ULB Institutional Repository 2013/7590, ULB -- Universite Libre de Bruxelles.
    5. Christiansen, Charlotte, 2008. "Level-ARCH short rate models with regime switching: Bivariate modeling of US and European short rates," International Review of Financial Analysis, Elsevier, vol. 17(5), pages 925-948, December.
    6. Gil-Bazo Javier & Rubio Gonzalo, 2004. "A Nonparametric Dimension Test of the Term Structure," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(3), pages 1-28, September.
    7. Kalimipalli, Madhu & Susmel, Raul, 2004. "Regime-switching stochastic volatility and short-term interest rates," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 309-329, June.
    8. repec:wyi:journl:002109 is not listed on IDEAS
    9. Perignon, Christophe & Smith, Daniel R., 2007. "Yield-factor volatility models," Journal of Banking & Finance, Elsevier, vol. 31(10), pages 3125-3144, October.
    10. Duc, Luu Hoang & Tran, Tat Dat & Jost, Jürgen, 2018. "Ergodicity of scalar stochastic differential equations with Hölder continuous coefficients," Stochastic Processes and their Applications, Elsevier, vol. 128(10), pages 3253-3272.
    11. Jin-Chuan Duan & Kris Jacobs, 2001. "Short and Long Memory in Equilibrium Interest Rate Dynamics," CIRANO Working Papers 2001s-22, CIRANO.
    12. Sun, Licheng, 2005. "Regime shifts in interest rate volatility," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 418-434, June.
    13. Constantin Mellios, 2001. "Valuation of Interest Rate Options in a Two-Factor Model of the Term Structure of Interest Rate," Working Papers 2001-1, Laboratoire Orléanais de Gestion - université d'Orléans.
    14. Duan, Jin-Chuan & Jacobs, Kris, 2008. "Is long memory necessary? An empirical investigation of nonnegative interest rate processes," Journal of Empirical Finance, Elsevier, vol. 15(3), pages 567-581, June.
    15. Fendel, Ralf, 2004. "Towards a Joint Characterization of Monetary Policy and the Dynamics of the Term Structure of Interest Rates," Discussion Paper Series 1: Economic Studies 2004,24, Deutsche Bundesbank.
    16. Teresa Corzo Santamaría & Javier Gómez Biscarri, 2005. "Nonparametric estimation of convergence of interest rates: Effects on bond pricing," Spanish Economic Review, Springer;Spanish Economic Association, vol. 7(3), pages 167-190, September.
    17. Zongwu Cai & Yongmiao Hong, 2013. "Some Recent Developments in Nonparametric Finance," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    18. Zhao, Juan, 2009. "Long time behaviour of stochastic interest rate models," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 459-463, June.
    19. Nan Chen & Zhengyu Huang, 2013. "Localization and Exact Simulation of Brownian Motion-Driven Stochastic Differential Equations," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 591-616, August.
    20. Jan de Kort, 2018. "A note on the long rate in factor models of the term structure," Mathematical Finance, Wiley Blackwell, vol. 28(2), pages 656-667, April.
    21. Cai, Zongwu & Hong, Yongmiao, 2003. "Nonparametric Methods in Continuous-Time Finance: A Selective Review," SFB 373 Discussion Papers 2003,15, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:53:y:2013:i:1:p:266-272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.