IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1106.2781.html
   My bibliography  Save this paper

Optimal Dividend Payments for the Piecewise-Deterministic Poisson Risk Model

Author

Listed:
  • Runhuan Feng
  • Hans Volkmer
  • Shuaiqi Zhang
  • Chao Zhu

Abstract

This paper considers the optimal dividend payment problem in piecewise-deterministic compound Poisson risk models. The objective is to maximize the expected discounted dividend payout up to the time of ruin. We provide a comparative study in this general framework of both restricted and unrestricted payment schemes, which were only previously treated separately in certain special cases of risk models in the literature. In the case of restricted payment scheme, the value function is shown to be a classical solution of the corresponding HJB equation, which in turn leads to an optimal restricted payment policy known as the threshold strategy. In the case of unrestricted payment scheme, by solving the associated integro-differential quasi-variational inequality, we obtain the value function as well as an optimal unrestricted dividend payment scheme known as the barrier strategy. When claim sizes are exponentially distributed, we provide easily verifiable conditions under which the threshold and barrier strategies are optimal restricted and unrestricted dividend payment policies, respectively. The main results are illustrated with several examples, including a new example concerning regressive growth rates.

Suggested Citation

  • Runhuan Feng & Hans Volkmer & Shuaiqi Zhang & Chao Zhu, 2011. "Optimal Dividend Payments for the Piecewise-Deterministic Poisson Risk Model," Papers 1106.2781, arXiv.org, revised Nov 2014.
  • Handle: RePEc:arx:papers:1106.2781
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1106.2781
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pablo Azcue & Nora Muler, 2005. "Optimal Reinsurance And Dividend Distribution Policies In The Cramér‐Lundberg Model," Mathematical Finance, Wiley Blackwell, vol. 15(2), pages 261-308, April.
    2. Hans Gerber & Elias Shiu, 2006. "On Optimal Dividend Strategies In The Compound Poisson Model," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(2), pages 76-93.
    3. Asmussen, Soren & Taksar, Michael, 1997. "Controlled diffusion models for optimal dividend pay-out," Insurance: Mathematics and Economics, Elsevier, vol. 20(1), pages 1-15, June.
    4. Chao Zhu, 2010. "Optimal control of risk process in a regime-switching environment," Papers 1009.3247, arXiv.org, revised Dec 2010.
    5. Paulsen, Jostein & Gjessing, Hakon K., 1997. "Optimal choice of dividend barriers for a risk process with stochastic return on investments," Insurance: Mathematics and Economics, Elsevier, vol. 20(3), pages 215-223, October.
    6. Hans Gerber & Elias Shiu, 1998. "On the Time Value of Ruin," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 48-72.
    7. Bjarne Højgaard & Søren Asmussen & Michael Taksar, 2000. "Optimal risk control and dividend distribution policies. Example of excess-of loss reinsurance for an insurance corporation," Finance and Stochastics, Springer, vol. 4(3), pages 299-324.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guan, Huiqi & Liang, Zongxia, 2014. "Viscosity solution and impulse control of the diffusion model with reinsurance and fixed transaction costs," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 109-122.
    2. Liang, Zhibin & Young, Virginia R., 2012. "Dividends and reinsurance under a penalty for ruin," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 437-445.
    3. Yongwu Li & Zhongfei Li & Yan Zeng, 2016. "Equilibrium Dividend Strategy with Non-exponential Discounting in a Dual Model," Journal of Optimization Theory and Applications, Springer, vol. 168(2), pages 699-722, February.
    4. Yangmin Zhong & Huaping Huang, 2023. "Cash Flow Optimization on Insurance: An Application of Fixed-Point Theory," Mathematics, MDPI, vol. 11(4), pages 1-12, February.
    5. Xiaoqing Liang & Zbigniew Palmowski, 2016. "A note on optimal expected utility of dividend payments with proportional reinsurance," Papers 1605.06849, arXiv.org, revised May 2017.
    6. Yin, Chuancun & Yuen, Kam Chuen, 2011. "Optimality of the threshold dividend strategy for the compound Poisson model," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1841-1846.
    7. Meng, Hui & Siu, Tak Kuen, 2011. "On optimal reinsurance, dividend and reinvestment strategies," Economic Modelling, Elsevier, vol. 28(1-2), pages 211-218, January.
    8. Jin, Zhuo & Yang, Hailiang & Yin, G., 2015. "Optimal debt ratio and dividend payment strategies with reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 351-363.
    9. Xu, Ran & Woo, Jae-Kyung, 2020. "Optimal dividend and capital injection strategy with a penalty payment at ruin: Restricted dividend payments," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 1-16.
    10. Ying Shen & Chuancun Yin & Kam Chuen Yuen, 2011. "Alternative approach to the optimality of the threshold strategy for spectrally negative Levy processes," Papers 1101.0446, arXiv.org, revised Feb 2014.
    11. Chonghu Guan & Jiacheng Fan & Zuo Quan Xu, 2023. "Optimal dividend payout with path-dependent drawdown constraint," Papers 2312.01668, arXiv.org.
    12. Yin, Chuancun & Wen, Yuzhen, 2013. "An extension of Paulsen–Gjessing’s risk model with stochastic return on investments," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 469-476.
    13. Ran Xu & Wenyuan Wang & Jose Garrido, 2022. "Optimal Dividend Strategy Under Parisian Ruin with Affine Penalty," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1385-1409, September.
    14. He, Lin & Liang, Zongxia, 2008. "Optimal financing and dividend control of the insurance company with proportional reinsurance policy," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 976-983, June.
    15. Thonhauser, Stefan & Albrecher, Hansjorg, 2007. "Dividend maximization under consideration of the time value of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 163-184, July.
    16. Yuen, Kam C. & Wang, Guojing & Li, Wai K., 2007. "The Gerber-Shiu expected discounted penalty function for risk processes with interest and a constant dividend barrier," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 104-112, January.
    17. Zhou, Ming & Yuen, Kam C., 2012. "Optimal reinsurance and dividend for a diffusion model with capital injection: Variance premium principle," Economic Modelling, Elsevier, vol. 29(2), pages 198-207.
    18. Chonghu Guan & Zuo Quan Xu, 2023. "Optimal ratcheting of dividend payout under Brownian motion surplus," Papers 2308.15048, arXiv.org, revised Jul 2024.
    19. Bjarne Højgaard & Michael Taksar, 2004. "Optimal dynamic portfolio selection for a corporation with controllable risk and dividend distribution policy," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 315-327.
    20. Irgens, Christian & Paulsen, Jostein, 2004. "Optimal control of risk exposure, reinsurance and investments for insurance portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 21-51, August.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1106.2781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.