IDEAS home Printed from https://ideas.repec.org/a/taf/uaajxx/v9y2005i3p129-142.html
   My bibliography  Save this article

Some Ruin Problems for a Risk Process with Stochastic Interest

Author

Listed:
  • Kam-Chuen Yuen
  • Guojing Wang

Abstract

As investment plays an increasingly important role in the insurance business, ruin analysis in the presence of stochastic interest (or stochastic return on investments) has become a key issue in modern risk theory, and the related results should be of interest to actuaries. Although the study of insurance risk models with stochastic interest has attracted a fair amount of attention in recent years, many significant ruin problems associated with these models remain to be investigated. In this paper we consider a risk process with stochastic interest in which the basic risk process is the classical risk process and the stochastic interest process (or the stochastic return-on-investmentgenerating process) is a compound Poisson process with positive drift. Within this framework, we first derive an integro-differential equation for the Gerber-Shiu expected discounted penalty function, and then obtain an exact solution to the equation. We also obtain closed-form expressions for the expected discounted penalty function in some special cases. Finally, we examine a lower bound for the ruin probability of the risk process.

Suggested Citation

  • Kam-Chuen Yuen & Guojing Wang, 2005. "Some Ruin Problems for a Risk Process with Stochastic Interest," North American Actuarial Journal, Taylor & Francis Journals, vol. 9(3), pages 129-142.
  • Handle: RePEc:taf:uaajxx:v:9:y:2005:i:3:p:129-142
    DOI: 10.1080/10920277.2005.10596215
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10920277.2005.10596215
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10920277.2005.10596215?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    2. Yin, Chuancun & Wen, Yuzhen, 2013. "An extension of Paulsen–Gjessing’s risk model with stochastic return on investments," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 469-476.
    3. Liang, Zhibin & Yuen, Kam Chuen & Guo, Junyi, 2011. "Optimal proportional reinsurance and investment in a stock market with Ornstein-Uhlenbeck process," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 207-215, September.
    4. Yuen, Kam C. & Wang, Guojing & Wu, Rong, 2006. "On the renewal risk process with stochastic interest," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1496-1510, October.
    5. Yue He & Reiichiro Kawai & Yasutaka Shimizu & Kazutoshi Yamazaki, 2022. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Papers 2203.10680, arXiv.org, revised Dec 2022.
    6. Yuen, Kam C. & Wang, Guojing & Li, Wai K., 2007. "The Gerber-Shiu expected discounted penalty function for risk processes with interest and a constant dividend barrier," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 104-112, January.
    7. Jostein Paulsen, 2008. "Ruin models with investment income," Papers 0806.4125, arXiv.org, revised Dec 2008.
    8. Chuancun Yin & Yuzhen Wen, 2013. "An extension of Paulsen-Gjessing's risk model with stochastic return on investments," Papers 1302.6757, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uaajxx:v:9:y:2005:i:3:p:129-142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uaaj .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.