Modelling the spreading process of extreme risks via a simple agent-based model: Evidence from the China stock market
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Ji, Jingru & Wang, Donghua & Xu, Dinghai, 2019. "Modelling the spreading process of extreme risks via a simple agent-based model: Evidence from the China stock market," Economic Modelling, Elsevier, vol. 80(C), pages 383-391.
References listed on IDEAS
- LeBaron, Blake, 2000. "Agent-based computational finance: Suggested readings and early research," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 679-702, June.
- Recchioni, Maria Cristina & Tedeschi, Gabriele & Gallegati, Mauro, 2015.
"A calibration procedure for analyzing stock price dynamics in an agent-based framework,"
Journal of Economic Dynamics and Control, Elsevier, vol. 60(C), pages 1-25.
- Recchioni, Maria Cristina & Tedeschi, Gabriele & Gallegati, Mauro, 2014. "A calibration procedure for analyzing stock price dynamics in an agent-based framework," FinMaP-Working Papers 26, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
- Thomas Lux & Michele Marchesi, 2000. "Volatility Clustering In Financial Markets: A Microsimulation Of Interacting Agents," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 675-702.
- Boswijk, H. Peter & Hommes, Cars H. & Manzan, Sebastiano, 2007.
"Behavioral heterogeneity in stock prices,"
Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 1938-1970, June.
- Peter Boswijk & Cars H. Hommes & Sebastiano Manzan, 2005. "Behavioral Heterogeneity in Stock Prices," Tinbergen Institute Discussion Papers 05-052/1, Tinbergen Institute.
- Boswijk, H.P. & Hommes C.H. & Manzan, S., 2005. "Behavioral Heterogeneity in Stock Prices," CeNDEF Working Papers 05-12, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
- McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
- Peter Winker & Manfred Gilli & Vahidin Jeleskovic, 2007.
"An objective function for simulation based inference on exchange rate data,"
Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 2(2), pages 125-145, December.
- Manfred Gilli & Peter Winker & Vahidin Jeleskovic, 2006. "An Objective Function for Simulation Based Inference on Exchange Rate Data," Computing in Economics and Finance 2006 147, Society for Computational Economics.
- Peter Winker & Manfred Gilli & Vahidin Jeleskovic, 2007. "An Objective Function for Simulation Based Inference on Exchange Rate Data," Swiss Finance Institute Research Paper Series 07-01, Swiss Finance Institute.
- Hong, Yongmiao & Liu, Yanhui & Wang, Shouyang, 2009. "Granger causality in risk and detection of extreme risk spillover between financial markets," Journal of Econometrics, Elsevier, vol. 150(2), pages 271-287, June.
- J. Doyne Farmer & Duncan Foley, 2009. "The economy needs agent-based modelling," Nature, Nature, vol. 460(7256), pages 685-686, August.
- Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
- Franke, Reiner, 2009. "Applying the method of simulated moments to estimate a small agent-based asset pricing model," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 804-815, December.
- Carmela Quintos & Zhenhong Fan & Peter C. B. Phillips, 2001. "Structural Change Tests in Tail Behaviour and the Asian Crisis," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 68(3), pages 633-663.
- Chavez-Demoulin, V. & McGill, J.A., 2012. "High-frequency financial data modeling using Hawkes processes," Journal of Banking & Finance, Elsevier, vol. 36(12), pages 3415-3426.
- Wei Zhang & Ziqiang Wu & Yongjie Zhang & Xiong Xiong, 2014. "Adaptive Behavior and Strategy Switching," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 13(03), pages 567-584.
- LeBaron, Blake & Arthur, W. Brian & Palmer, Richard, 1999.
"Time series properties of an artificial stock market,"
Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1487-1516, September.
- Arthur, W.B. & LeBaron, B. & Palmer, R., 1997. "Time Series Properties of an Artificial Stock Market," Working papers 9725, Wisconsin Madison - Social Systems.
- Simone Alfarano & Thomas Lux & Friedrich Wagner, 2005. "Estimation of Agent-Based Models: The Case of an Asymmetric Herding Model," Computational Economics, Springer;Society for Computational Economics, vol. 26(1), pages 19-49, August.
- Farmer, J. Doyne & Joshi, Shareen, 2002.
"The price dynamics of common trading strategies,"
Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 149-171, October.
- J. Doyne Farmer & Shareen Joshi, 2000. "The Price Dynamics of Common Trading Strategies," Working Papers 00-12-069, Santa Fe Institute.
- J. Doyne Farmer & Shareen Joshi, 2000. "The price dynamics of common trading strategies," Papers cond-mat/0012419, arXiv.org.
- Brock, William A. & Hommes, Cars H., 1998.
"Heterogeneous beliefs and routes to chaos in a simple asset pricing model,"
Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
- Brock, W.A. & Hommes, C.H., 1996. "Hetergeneous Beliefs and Routes to Chaos in a Simple Asset Pricing Model," Working papers 9621, Wisconsin Madison - Social Systems.
- Li, Mengling & Zheng, Huanhuan & Tai Leung Chong, Terence & Zhang, Yang, 2016.
"The stock–bond comovements and cross-market trading,"
Journal of Economic Dynamics and Control, Elsevier, vol. 73(C), pages 417-438.
- Li, Mengling & Zheng, Huanhuan & Chong, Terence Tai Leung & Zhang, Yang, 2016. "The Stock-Bond Comovements and Cross-Market Trading," MPRA Paper 75871, University Library of Munich, Germany.
- Alan Kirman, 1993. "Ants, Rationality, and Recruitment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(1), pages 137-156.
- Frank Westerhoff & Reiner Franke, 2012. "Converse trading strategies, intrinsic noise and the stylized facts of financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 12(3), pages 425-436, June.
- Wagner, Niklas, 2005. "Autoregressive conditional tail behavior and results on Government bond yield spreads," International Review of Financial Analysis, Elsevier, vol. 14(2), pages 247-261.
- Grothe, Oliver & Korniichuk, Volodymyr & Manner, Hans, 2014. "Modeling multivariate extreme events using self-exciting point processes," Journal of Econometrics, Elsevier, vol. 182(2), pages 269-289.
- Grazzini, Jakob & Richiardi, Matteo, 2015.
"Estimation of ergodic agent-based models by simulated minimum distance,"
Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 148-165.
- Jakob Grazzini & Matteo Richiardi, 2014. "Estimation of Ergodic Agent-Based Models by Simulated Minimum Distance," Economics Papers 2014-W07, Economics Group, Nuffield College, University of Oxford.
- Franke, Reiner & Westerhoff, Frank, 2012.
"Structural stochastic volatility in asset pricing dynamics: Estimation and model contest,"
Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1193-1211.
- Franke, Reiner & Westerhoff, Frank, 2011. "Structural stochastic volatility in asset pricing dynamics: Estimation and model contest," BERG Working Paper Series 78, Bamberg University, Bamberg Economic Research Group.
- Chavez-Demoulin, V. & Embrechts, P. & Neslehova, J., 2006. "Quantitative models for operational risk: Extremes, dependence and aggregation," Journal of Banking & Finance, Elsevier, vol. 30(10), pages 2635-2658, October.
- Lux, Thomas, 1995. "Herd Behaviour, Bubbles and Crashes," Economic Journal, Royal Economic Society, vol. 105(431), pages 881-896, July.
- Jakob Grazzini, 2012. "Analysis of the Emergent Properties: Stationarity and Ergodicity," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 15(2), pages 1-7.
- Ghonghadze, Jaba & Lux, Thomas, 2016. "Bringing an elementary agent-based model to the data: Estimation via GMM and an application to forecasting of asset price volatility," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 1-19.
- Rama Cont & Arseniy Kukanov & Sasha Stoikov, 2010. "The Price Impact of Order Book Events," Papers 1011.6402, arXiv.org, revised Apr 2011.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Jinyu & Zhang, Qiaosen & Li, Yong & Wang, Qianchao, 2023. "Sequential Bayesian inference for agent-based models with application to the Chinese business cycle," Economic Modelling, Elsevier, vol. 126(C).
- Tubbenhauer, Tobias & Fieberg, Christian & Poddig, Thorsten, 2021. "Multi-agent-based VaR forecasting," Journal of Economic Dynamics and Control, Elsevier, vol. 131(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tubbenhauer, Tobias & Fieberg, Christian & Poddig, Thorsten, 2021. "Multi-agent-based VaR forecasting," Journal of Economic Dynamics and Control, Elsevier, vol. 131(C).
- Kukacka, Jiri & Barunik, Jozef, 2017.
"Estimation of financial agent-based models with simulated maximum likelihood,"
Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 21-45.
- Kukacka, Jiri & Barunik, Jozef, 2016. "Estimation of financial agent-based models with simulated maximum likelihood," FinMaP-Working Papers 63, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
- Alexandru Mandes & Peter Winker, 2017.
"Complexity and model comparison in agent based modeling of financial markets,"
Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(3), pages 469-506, October.
- Alexandru Mandes & Peter Winker, 2015. "Complexity and Model Comparison in Agent Based Modeling of Financial Markets," MAGKS Papers on Economics 201528, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
- Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018.
"Agent-based model calibration using machine learning surrogates,"
Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," SciencePo Working papers Main hal-01499344, HAL.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," Working Papers hal-03458875, HAL.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01499344, HAL.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," Papers 1703.10639, arXiv.org, revised Apr 2017.
- Frencesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-based model calibration using machine learning surrogates," Documents de Travail de l'OFCE 2017-09, Observatoire Francais des Conjonctures Economiques (OFCE).
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," LEM Papers Series 2017/11, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," Working Papers hal-01499344, HAL.
- Blaurock, Ivonne & Schmitt, Noemi & Westerhoff, Frank, 2018.
"Market entry waves and volatility outbursts in stock markets,"
Journal of Economic Behavior & Organization, Elsevier, vol. 153(C), pages 19-37.
- Blaurock, Ivonne & Schmitt, Noemi & Westerhoff, Frank, 2017. "Market entry waves and volatility outbursts in stock markets," BERG Working Paper Series 128, Bamberg University, Bamberg Economic Research Group.
- Zhenxi Chen & Thomas Lux, 2018.
"Estimation of Sentiment Effects in Financial Markets: A Simulated Method of Moments Approach,"
Computational Economics, Springer;Society for Computational Economics, vol. 52(3), pages 711-744, October.
- Zhenxi, Chen & Lux, Thomas, 2015. "Estimation of sentiment effects in financial markets: A simulated method of moments approach," FinMaP-Working Papers 37, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
- repec:hal:spmain:info:hdl:2441/20hflp7eqn97boh50no50tv67n is not listed on IDEAS
- repec:spo:wpmain:info:hdl:2441/20hflp7eqn97boh50no50tv67n is not listed on IDEAS
- Donovan Platt, 2019. "A Comparison of Economic Agent-Based Model Calibration Methods," Papers 1902.05938, arXiv.org.
- Zila, Eric & Kukacka, Jiri, 2023. "Moment set selection for the SMM using simple machine learning," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 366-391.
- repec:hal:spmain:info:hdl:2441/13thfd12aa8rmplfudlgvgahff is not listed on IDEAS
- Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
- Francesco Lamperti, 2018. "Empirical validation of simulated models through the GSL-div: an illustrative application," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(1), pages 143-171, April.
- Torsten Trimborn & Philipp Otte & Simon Cramer & Max Beikirch & Emma Pabich & Martin Frank, 2018. "SABCEMM-A Simulator for Agent-Based Computational Economic Market Models," Papers 1801.01811, arXiv.org, revised Oct 2018.
- Platt, Donovan, 2020. "A comparison of economic agent-based model calibration methods," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
- Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018.
"Agent-based model calibration using machine learning surrogates,"
Journal of Economic Dynamics and Control,
Elsevier, vol. 90(C), pages 366-389.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," Working Papers hal-01499344, HAL.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2018. "Agent-based model calibration using machine learning surrogates," Sciences Po publications info:hdl:2441/13thfd12aa8, Sciences Po.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01499344, HAL.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," Sciences Po publications 2017-09, Sciences Po.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," Papers 1703.10639, arXiv.org, revised Apr 2017.
- Frencesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-based model calibration using machine learning surrogates," Documents de Travail de l'OFCE 2017-09, Observatoire Francais des Conjonctures Economiques (OFCE).
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," LEM Papers Series 2017/11, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
- Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017.
"Validation of Agent-Based Models in Economics and Finance,"
LEM Papers Series
2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
- Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2019. "Validation of Agent-Based Models in Economics and Finance," SciencePo Working papers Main halshs-02375423, HAL.
- Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2019. "Validation of Agent-Based Models in Economics and Finance," Post-Print halshs-02375423, HAL.
- Schmitt, Noemi, 2018. "Heterogeneous expectations and asset price dynamics," BERG Working Paper Series 134, Bamberg University, Bamberg Economic Research Group.
- Lux, Thomas, 2018. "Estimation of agent-based models using sequential Monte Carlo methods," Journal of Economic Dynamics and Control, Elsevier, vol. 91(C), pages 391-408.
- Radu T. Pruna & Maria Polukarov & Nicholas R. Jennings, 2016. "A new structural stochastic volatility model of asset pricing and its stylized facts," Papers 1604.08824, arXiv.org.
- He, Xue-Zhong & Li, Youwei, 2015.
"Testing of a market fraction model and power-law behaviour in the DAX 30,"
Journal of Empirical Finance, Elsevier, vol. 31(C), pages 1-17.
- Xue-Zhong He & Youwei Li, 2015. "Testing of a Market Fraction Model and Power-Law Behaviour in the Dax 30," Research Paper Series 354, Quantitative Finance Research Centre, University of Technology, Sydney.
- Donovan Platt, 2022. "Bayesian Estimation of Economic Simulation Models Using Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 599-650, February.
- Hommes, Cars H., 2006.
"Heterogeneous Agent Models in Economics and Finance,"
Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186,
Elsevier.
- Cars H. Hommes, 2005. "Heterogeneous Agent Models in Economics and Finance," Tinbergen Institute Discussion Papers 05-056/1, Tinbergen Institute.
More about this item
JEL classification:
- C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CNA-2018-10-01 (China)
- NEP-ORE-2018-10-01 (Operations Research)
- NEP-RMG-2018-10-01 (Risk Management)
- NEP-TRA-2018-10-01 (Transition Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wat:wpaper:1806. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sherri Anne Arsenault (email available below). General contact details of provider: https://edirc.repec.org/data/dewatca.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.