IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v39y2009i01p199-223_00.html
   My bibliography  Save this article

Estimating the Variance of Bootstrapped Risk Measures

Author

Listed:
  • Kim, Joseph H.T.
  • Hardy, Mary R.

Abstract

In Kim and Hardy (2007) the exact bootstrap was used to estimate certain risk measures including Value at Risk and the Conditional Tail Expectation. In this paper we continue this work by deriving the influence function of the exact-bootstrapped quantile risk measure. We can use the influence function to estimate the variance of the exact-bootstrap risk measure. We then extend the result to the L-estimator class, which includes the conditional tail expectation risk measure. The resulting formula provides an alternative way to estimate the variance of the bootstrapped risk measures, or the whole L-estimator class in an analytic form. A simulation study shows that this new method is comparable to the ordinary resampling-based bootstrap method, with the advantages of an analytic approach.

Suggested Citation

  • Kim, Joseph H.T. & Hardy, Mary R., 2009. "Estimating the Variance of Bootstrapped Risk Measures," ASTIN Bulletin, Cambridge University Press, vol. 39(1), pages 199-223, May.
  • Handle: RePEc:cup:astinb:v:39:y:2009:i:01:p:199-223_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S051503610000009X/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Joseph H.T., 2010. "Bias correction for estimated distortion risk measure using the bootstrap," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 198-205, October.
    2. Gao, Huan & Mamon, Rogemar & Liu, Xiaoming, 2017. "Risk measurement of a guaranteed annuity option under a stochastic modelling framework," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 132(C), pages 100-119.
    3. Chen, Cong & Zhang, Su & Zhang, Guohui & Bogus, Susan M. & Valentin, Vanessa, 2014. "Discovering temporal and spatial patterns and characteristics of pavement distress condition data on major corridors in New Mexico," Journal of Transport Geography, Elsevier, vol. 38(C), pages 148-158.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:39:y:2009:i:01:p:199-223_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.