IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v31y2002i3p365-372.html
   My bibliography  Save this article

Time in the red in a two state Markov model

Author

Listed:
  • Wagner, Christian

Abstract

No abstract is available for this item.

Suggested Citation

  • Wagner, Christian, 2002. "Time in the red in a two state Markov model," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 365-372, December.
  • Handle: RePEc:eee:insuma:v:31:y:2002:i:3:p:365-372
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(02)00174-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wagner, Christian, 2001. "A Note on Ruin in a Two State Markov Model1," ASTIN Bulletin, Cambridge University Press, vol. 31(2), pages 349-358, November.
    2. Egidio dos Reis, Alfredo, 1993. "How long is the surplus below zero?," Insurance: Mathematics and Economics, Elsevier, vol. 12(1), pages 23-38, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dhiti Osatakul & Xueyuan Wu, 2021. "Discrete-Time Risk Models with Claim Correlated Premiums in a Markovian Environment," Risks, MDPI, vol. 9(1), pages 1-23, January.
    2. Osatakul, Dhiti & Li, Shuanming & Wu, Xueyuan, 2023. "Discrete-time risk models with surplus-dependent premium corrections," Applied Mathematics and Computation, Elsevier, vol. 437(C).
    3. Ka-Meng Siu & Ka-Hou Chan & Sio-Kei Im, 2023. "A Study of Assessment of Casinos’ Risk of Ruin in Casino Games with Poisson Distribution," Mathematics, MDPI, vol. 11(7), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min Song & Rong Wu & Xin Zhang, 2008. "Total duration of negative surplus for the dual model," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(6), pages 591-600, November.
    2. Dhiti Osatakul & Shuanming Li & Xueyuan Wu, 2024. "Bonus-malus Systems vs Delays in Claims Reporting and Settlement: Analysis of Ruin Probabilities," Papers 2408.00003, arXiv.org.
    3. Cheung, Eric C.K. & Wong, Jeff T.Y., 2017. "On the dual risk model with Parisian implementation delays in dividend payments," European Journal of Operational Research, Elsevier, vol. 257(1), pages 159-173.
    4. He, Jingmin & Wu, Rong & Zhang, Huayue, 2009. "Total duration of negative surplus for the risk model with debit interest," Statistics & Probability Letters, Elsevier, vol. 79(10), pages 1320-1326, May.
    5. Landriault, David & Shi, Tianxiang, 2015. "Occupation times in the MAP risk model," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 75-82.
    6. Zhang, Chunsheng & Wang, Guojing, 2003. "The joint density function of three characteristics on jump-diffusion risk process," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 445-455, July.
    7. Gerber, Hans U. & Landry, Bruno, 1998. "On the discounted penalty at ruin in a jump-diffusion and the perpetual put option," Insurance: Mathematics and Economics, Elsevier, vol. 22(3), pages 263-276, July.
    8. David Landriault & Bin Li & Mohamed Amine Lkabous, 2019. "On occupation times in the red of L\'evy risk models," Papers 1903.03721, arXiv.org, revised Jul 2019.
    9. Mousa, A.S. & Pinheiro, D. & Pinto, A.A., 2016. "Optimal life-insurance selection and purchase within a market of several life-insurance providers," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 133-141.
    10. Dickson, David C. M. & Egidio dos Reis, Alfredo D., 1997. "The effect of interest on negative surplus," Insurance: Mathematics and Economics, Elsevier, vol. 21(1), pages 1-16, October.
    11. Yitao Yang & Jingmin He & Zhongqin Gao & Bingbing Wang, 2017. "Exit times for the diffusion risk model with debit interest," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1810-1815, November.
    12. Wong, Jeff T.Y. & Cheung, Eric C.K., 2015. "On the time value of Parisian ruin in (dual) renewal risk processes with exponential jumps," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 280-290.
    13. Landriault, David & Li, Bin & Lkabous, Mohamed Amine, 2020. "On occupation times in the red of Lévy risk models," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 17-26.
    14. Esther Frostig & Adva Keren–Pinhasik, 2017. "Parisian ruin in the dual model with applications to the G/M/1 queue," Queueing Systems: Theory and Applications, Springer, vol. 86(3), pages 261-275, August.
    15. Egidio dos Reis, Alfredo D., 2000. "On the moments of ruin and recovery times," Insurance: Mathematics and Economics, Elsevier, vol. 27(3), pages 331-343, December.
    16. Willmot, Gordon E. & Sheldon Lin, X., 1998. "Exact and approximate properties of the distribution of surplus before and after ruin," Insurance: Mathematics and Economics, Elsevier, vol. 23(1), pages 91-110, October.
    17. Li, Shuanming & Ren, Jiandong, 2013. "The maximum severity of ruin in a perturbed risk process with Markovian arrivals," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 993-998.
    18. Osatakul, Dhiti & Li, Shuanming & Wu, Xueyuan, 2023. "Discrete-time risk models with surplus-dependent premium corrections," Applied Mathematics and Computation, Elsevier, vol. 437(C).
    19. Romain Biard & Stéphane Loisel & Claudio Macci & Noel Veraverbeke, 2010. "Asymptotic behavior of the finite-time expected time-integrated negative part of some risk processes and optimal reserve allocation," Post-Print hal-00372525, HAL.
    20. Kolkovska, Ekaterina T. & Lopez-Mimbela, Jose A. & Morales, Jose Villa, 2005. "Occupation measure and local time of classical risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 573-584, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:31:y:2002:i:3:p:365-372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.