IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v8y2017i2d10.1007_s13198-017-0676-7.html
   My bibliography  Save this article

Exit times for the diffusion risk model with debit interest

Author

Listed:
  • Yitao Yang

    (Tianjin University of Technology)

  • Jingmin He

    (Tianjin University of Technology)

  • Zhongqin Gao

    (Tianjin University of Technology)

  • Bingbing Wang

    (Tianjin University of Technology)

Abstract

This paper investigates the diffusion risk model with debit interest. The Laplace–Stieltjes transform (LST) of the first exit times of the risk process is obtained. Finally, numerical examples are given to illustrate the applications of the LST of some exit times.

Suggested Citation

  • Yitao Yang & Jingmin He & Zhongqin Gao & Bingbing Wang, 2017. "Exit times for the diffusion risk model with debit interest," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1810-1815, November.
  • Handle: RePEc:spr:ijsaem:v:8:y:2017:i:2:d:10.1007_s13198-017-0676-7
    DOI: 10.1007/s13198-017-0676-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-017-0676-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-017-0676-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gerber, Hans U., 1990. "When does the surplus reach a given target?," Insurance: Mathematics and Economics, Elsevier, vol. 9(2-3), pages 115-119, September.
    2. Jacobsen, Martin & Jensen, Anders Tolver, 2007. "Exit times for a class of piecewise exponential Markov processes with two-sided jumps," Stochastic Processes and their Applications, Elsevier, vol. 117(9), pages 1330-1356, September.
    3. Egidio dos Reis, Alfredo, 1993. "How long is the surplus below zero?," Insurance: Mathematics and Economics, Elsevier, vol. 12(1), pages 23-38, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Jingmin & Wu, Rong & Zhang, Huayue, 2009. "Total duration of negative surplus for the risk model with debit interest," Statistics & Probability Letters, Elsevier, vol. 79(10), pages 1320-1326, May.
    2. Landriault, David & Shi, Tianxiang, 2015. "Occupation times in the MAP risk model," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 75-82.
    3. Shuanming Li & Yi Lu & Can Jin, 2016. "Number of Jumps in Two-Sided First-Exit Problems for a Compound Poisson Process," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 747-764, September.
    4. Egidio dos Reis, Alfredo D., 2002. "How many claims does it take to get ruined and recovered?," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 235-248, October.
    5. Min Song & Rong Wu & Xin Zhang, 2008. "Total duration of negative surplus for the dual model," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(6), pages 591-600, November.
    6. Cheung, Eric C.K. & Wong, Jeff T.Y., 2017. "On the dual risk model with Parisian implementation delays in dividend payments," European Journal of Operational Research, Elsevier, vol. 257(1), pages 159-173.
    7. Mousa, A.S. & Pinheiro, D. & Pinto, A.A., 2016. "Optimal life-insurance selection and purchase within a market of several life-insurance providers," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 133-141.
    8. Dickson, David C. M. & Egidio dos Reis, Alfredo D., 1997. "The effect of interest on negative surplus," Insurance: Mathematics and Economics, Elsevier, vol. 21(1), pages 1-16, October.
    9. Wong, Jeff T.Y. & Cheung, Eric C.K., 2015. "On the time value of Parisian ruin in (dual) renewal risk processes with exponential jumps," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 280-290.
    10. Egidio dos Reis, Alfredo D., 2000. "On the moments of ruin and recovery times," Insurance: Mathematics and Economics, Elsevier, vol. 27(3), pages 331-343, December.
    11. Kolkovska, Ekaterina T. & Lopez-Mimbela, Jose A. & Morales, Jose Villa, 2005. "Occupation measure and local time of classical risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 573-584, December.
    12. Jin, Can & Li, Shuanming & Wu, Xueyuan, 2016. "On the occupation times in a delayed Sparre Andersen risk model with exponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 304-316.
    13. Dassios, Angelos & Wu, Shanle, 2008. "Parisian ruin with exponential claims," LSE Research Online Documents on Economics 32033, London School of Economics and Political Science, LSE Library.
    14. Wagner, Christian, 2002. "Time in the red in a two state Markov model," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 365-372, December.
    15. Chunhao Cai & Bo Li, 2018. "Occupation Times of Intervals Until Last Passage Times for Spectrally Negative Lévy Processes," Journal of Theoretical Probability, Springer, vol. 31(4), pages 2194-2215, December.
    16. Gerber, Hans U. & Landry, Bruno, 1998. "On the discounted penalty at ruin in a jump-diffusion and the perpetual put option," Insurance: Mathematics and Economics, Elsevier, vol. 22(3), pages 263-276, July.
    17. Picard, Philippe & Lefevre, Claude, 1998. "The moments of ruin time in the classical risk model with discrete claim size distribution," Insurance: Mathematics and Economics, Elsevier, vol. 23(2), pages 157-172, November.
    18. Wang, Nan & Politis, Konstadinos, 2002. "Some characteristics of a surplus process in the presence of an upper barrier," Insurance: Mathematics and Economics, Elsevier, vol. 30(2), pages 231-241, April.
    19. Gerber, Hans U. & Shiu, Elias S. W., 1997. "The joint distribution of the time of ruin, the surplus immediately before ruin, and the deficit at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 129-137, November.
    20. Baurdoux, Erik J. & Pedraza, José M., 2024. "Lp optimal prediction of the last zero of a spectrally negative Lévy process," LSE Research Online Documents on Economics 119468, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:8:y:2017:i:2:d:10.1007_s13198-017-0676-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.