IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v77y2017icp143-149.html
   My bibliography  Save this article

Some comparison results for finite-time ruin probabilities in the classical risk model

Author

Listed:
  • Lefèvre, Claude
  • Trufin, Julien
  • Zuyderhoff, Pierre

Abstract

This paper aims at showing how an ordering on claim amounts can influence finite-time ruin probabilities. Until now such a question was examined essentially for ultimate ruin probabilities. Over a finite horizon, a general approach does not seem possible but the study is conducted under different sets of conditions. This primarily covers the cases where the initial reserve is null or large.

Suggested Citation

  • Lefèvre, Claude & Trufin, Julien & Zuyderhoff, Pierre, 2017. "Some comparison results for finite-time ruin probabilities in the classical risk model," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 143-149.
  • Handle: RePEc:eee:insuma:v:77:y:2017:i:c:p:143-149
    DOI: 10.1016/j.insmatheco.2017.09.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668717302408
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2017.09.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christian Yann Robert, 2014. "On the De Vylder and Goovaerts Conjecture About Ruin for Equalized Claims," Post-Print hal-02006620, HAL.
    2. Cheng, Yu & Pai, Jeffrey S., 2003. "On the nth stop-loss transform order of ruin probability," Insurance: Mathematics and Economics, Elsevier, vol. 32(1), pages 51-60, February.
    3. Tang, Qihe & Wei, Li, 2010. "Asymptotic aspects of the Gerber-Shiu function in the renewal risk model using Wiener-Hopf factorization and convolution equivalence," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 19-31, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Denuit, Michel & Robert, Christian Y., 2022. "Dynamic conditional mean risk sharing in the compound Poisson surplus model," LIDAM Discussion Papers ISBA 2022034, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Denuit, Michel & Robert, Christian Y., 2023. "Conditional mean risk sharing of losses at occurrence time in the compound Poisson surplus model," Insurance: Mathematics and Economics, Elsevier, vol. 112(C), pages 23-32.
    3. Mohamed Amine Lkabous & Jean-François Renaud, 2018. "A VaR-Type Risk Measure Derived from Cumulative Parisian Ruin for the Classical Risk Model," Risks, MDPI, vol. 6(3), pages 1-11, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Griffin, Philip S. & Maller, Ross A. & Schaik, Kees van, 2012. "Asymptotic distributions of the overshoot and undershoots for the Lévy insurance risk process in the Cramér and convolution equivalent cases," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 382-392.
    2. Stefan Ankirchner & Christophette Blanchet-Scalliet & Nabil Kazi-Tani, 2019. "The De Vylder-Goovaerts conjecture holds true within the diffusion limit," Post-Print hal-01887402, HAL.
    3. Albrecher, Hansjoerg & Constantinescu, Corina & Thomann, Enrique, 2012. "Asymptotic results for renewal risk models with risky investments," Stochastic Processes and their Applications, Elsevier, vol. 122(11), pages 3767-3789.
    4. Geiger Daniel J. & Adekpedjou Akim, 2019. "On corrected phase-type approximations of the time value of ruin with heavy tails," Statistics & Risk Modeling, De Gruyter, vol. 36(1-4), pages 57-75, December.
    5. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    6. Kim, Bara & Kim, Jeongsim & Kim, Jerim, 2021. "De Vylder and Goovaerts' conjecture on homogeneous risk models with equalized claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 186-201.
    7. Lefèvre, Claude & Loisel, Stéphane, 2010. "Stationary-excess operator and convex stochastic orders," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 64-75, August.
    8. Orbán Mihálykó, Éva & Mihálykó, Csaba, 2011. "Mathematical investigation of the Gerber-Shiu function in the case of dependent inter-claim time and claim size," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 378-383, May.
    9. Tsai, Cary Chi-Liang, 2006. "On the stop-loss transform and order for the surplus process perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 39(1), pages 151-170, August.
    10. Griffin, Philip S. & Maller, Ross A. & Roberts, Dale, 2013. "Finite time ruin probabilities for tempered stable insurance risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 478-489.
    11. Stéphane Loisel & Charles Minier, 2023. "On the Devylder–Goovaerts Conjecture in Ruin Theory," Mathematics, MDPI, vol. 11(6), pages 1-10, March.
    12. Wang, Bingjie & Li, Jinzhu, 2024. "Asymptotic results on tail moment for light-tailed risks," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 43-55.
    13. Lazaros Kanellopoulos, 2023. "Some Stochastic Orders over an Interval with Applications," Risks, MDPI, vol. 11(9), pages 1-14, September.
    14. Yue He & Reiichiro Kawai & Yasutaka Shimizu & Kazutoshi Yamazaki, 2022. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Papers 2203.10680, arXiv.org, revised Dec 2022.
    15. S. M. Sunoj & N. Vipin, 2019. "Some properties of conditional partial moments in the context of stochastic modelling," Statistical Papers, Springer, vol. 60(6), pages 1971-1999, December.
    16. Stefan Ankirchner & Christophette Blanchet-Scalliet & Nabil Kazi-Tani, 2018. "The De Vylder-Goovaerts conjecture holds true within the diffusion limit," Working Papers hal-01887402, HAL.
    17. Wang, Kaiyong & Yang, Yang & Yu, Changjun, 2013. "Estimates for the overshoot of a random walk with negative drift and non-convolution equivalent increments," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1504-1512.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:77:y:2017:i:c:p:143-149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.