IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v17y2023i2s1751157723000342.html
   My bibliography  Save this article

Disclosing the interactive mechanism behind scientists’ topic selection behavior from the perspective of the productivity and the impact

Author

Listed:
  • Huang, Shengzhi
  • Huang, Yong
  • Bu, Yi
  • Luo, Zhuoran
  • Lu, Wei

Abstract

The productivity and the impact are two most recognized aspects to evaluate the research performance of scientists. Figuring out whether and how these two factors shape the evolution of scientists’ research interests may facilitate researchers to go deep into scientists’ topic selection behavior. In this paper, we employ Microsoft Academic Graph as our data source, and propose two correlation metrics, by which over 20,000 scientists’ publication sequence from the computer science field are analyzed. We confirm that the productivity and the impact are related to the evolution of scientists’ research interests, and scientists tend to select topics which help them produce the productivity and the impact. To further explore how these two factors affects topic selection behavior, we propose a novel Q seashore walk model based on the interactive mechanism hypothesis. Our analysis results based on the simulation data are consistent with those based on the empirical data, which confirms the validity of our model and reports the evidence for the interactive mechanism. Based on the simulation data, we also analyze the role of reward for scientists’ research performance, and find that “too much is as bad as too little”. This research may help researchers deeply understand the process of topic selection, and provide a theoretical basis for research and development policy formulation.

Suggested Citation

  • Huang, Shengzhi & Huang, Yong & Bu, Yi & Luo, Zhuoran & Lu, Wei, 2023. "Disclosing the interactive mechanism behind scientists’ topic selection behavior from the perspective of the productivity and the impact," Journal of Informetrics, Elsevier, vol. 17(2).
  • Handle: RePEc:eee:infome:v:17:y:2023:i:2:s1751157723000342
    DOI: 10.1016/j.joi.2023.101409
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157723000342
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2023.101409?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. An Zeng & Zhesi Shen & Jianlin Zhou & Ying Fan & Zengru Di & Yougui Wang & H. Eugene Stanley & Shlomo Havlin, 2019. "Increasing trend of scientists to switch between topics," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    2. Antonio Perianes‐Rodriguez & Javier Ruiz‐Castillo, 2018. "The impact of classification systems in the evaluation of the research performance of the Leiden Ranking universities," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 69(8), pages 1046-1053, August.
    3. Mahmood Khosrowjerdi & Lutz Bornmann, 2019. "Is culture related to strong science? An empirical investigation," Papers 1909.04521, arXiv.org, revised Apr 2021.
    4. Grit Laudel, 2006. "The art of getting funded: How scientists adapt to their funding conditions," Science and Public Policy, Oxford University Press, vol. 33(7), pages 489-504, August.
    5. Zhu, Nibing & Liu, Chang & Yang, Zhilin, 2021. "Team Size, Research Variety, and Research Performance: Do Coauthors’ Coauthors Matter?," Journal of Informetrics, Elsevier, vol. 15(4).
    6. Ching Jin & Yifang Ma & Brian Uzzi, 2021. "Scientific prizes and the extraordinary growth of scientific topics," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    7. Khosrowjerdi, Mahmood & Bornmann, Lutz, 2021. "Is culture related to strong science? An empirical investigation," Journal of Informetrics, Elsevier, vol. 15(4).
    8. Simon Ciranka & Juan Linde-Domingo & Ivan Padezhki & Clara Wicharz & Charley M. Wu & Bernhard Spitzer, 2022. "Asymmetric reinforcement learning facilitates human inference of transitive relations," Nature Human Behaviour, Nature, vol. 6(4), pages 555-564, April.
    9. Buehling, Kilian, 2021. "Changing research topic trends as an effect of publication rankings – The case of German economists and the Handelsblatt Ranking," Journal of Informetrics, Elsevier, vol. 15(3).
    10. Tao Jia & Dashun Wang & Boleslaw K. Szymanski, 2017. "Quantifying patterns of research-interest evolution," Nature Human Behaviour, Nature, vol. 1(4), pages 1-7, April.
    11. Yu, Xiaoyao & Szymanski, Boleslaw K. & Jia, Tao, 2021. "Become a better you: Correlation between the change of research direction and the change of scientific performance," Journal of Informetrics, Elsevier, vol. 15(3).
    12. Li, Menghui & Yang, Liying & Zhang, Huina & Shen, Zhesi & Wu, Chensheng & Wu, Jinshan, 2017. "Do mathematicians, economists and biomedical scientists trace large topics more strongly than physicists?," Journal of Informetrics, Elsevier, vol. 11(2), pages 598-607.
    13. Wallace, Matthew L. & Ràfols, Ismael, 2018. "Institutional shaping of research priorities: A case study on avian influenza," Research Policy, Elsevier, vol. 47(10), pages 1975-1989.
    14. David Silver & Julian Schrittwieser & Karen Simonyan & Ioannis Antonoglou & Aja Huang & Arthur Guez & Thomas Hubert & Lucas Baker & Matthew Lai & Adrian Bolton & Yutian Chen & Timothy Lillicrap & Fan , 2017. "Mastering the game of Go without human knowledge," Nature, Nature, vol. 550(7676), pages 354-359, October.
    15. Yi Bu & Ying Ding & Jian Xu & Xingkun Liang & Gege Gao & Yiming Zhao, 2018. "Understanding success through the diversity of collaborators and the milestone of career," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 69(1), pages 87-97, January.
    16. Jordi Duch & Xiao Han T Zeng & Marta Sales-Pardo & Filippo Radicchi & Shayna Otis & Teresa K Woodruff & Luís A Nunes Amaral, 2012. "The Possible Role of Resource Requirements and Academic Career-Choice Risk on Gender Differences in Publication Rate and Impact," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Liying & Wang, Yang & Li, Meiling, 2024. "Exploration, exploitation and funding success: Evidence from junior scientists supported by the Chinese Young Scientists Fund," Journal of Informetrics, Elsevier, vol. 18(2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Liu & Benjamin F. Jones & Brian Uzzi & Dashun Wang, 2023. "Data, measurement and empirical methods in the science of science," Nature Human Behaviour, Nature, vol. 7(7), pages 1046-1058, July.
    2. Yu, Xiaoyao & Szymanski, Boleslaw K. & Jia, Tao, 2021. "Become a better you: Correlation between the change of research direction and the change of scientific performance," Journal of Informetrics, Elsevier, vol. 15(3).
    3. Yongchao Ma & Ying Teng & Zhongzhun Deng & Li Liu & Yi Zhang, 2023. "Does writing style affect gender differences in the research performance of articles?: An empirical study of BERT-based textual sentiment analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(4), pages 2105-2143, April.
    4. Guo, Liying & Wang, Yang & Li, Meiling, 2024. "Exploration, exploitation and funding success: Evidence from junior scientists supported by the Chinese Young Scientists Fund," Journal of Informetrics, Elsevier, vol. 18(2).
    5. Yu, Shuo & Alqahtani, Fayez & Tolba, Amr & Lee, Ivan & Jia, Tao & Xia, Feng, 2022. "Collaborative Team Recognition: A Core Plus Extension Structure," Journal of Informetrics, Elsevier, vol. 16(4).
    6. Zhang, Lin & Qi, Fan & Sivertsen, Gunnar & Liang, Liming & Campbell, David, 2023. "Gender differences in the patterns and consequences of changing specialization in scientific careers," SocArXiv ep5bx, Center for Open Science.
    7. Katchanov, Yurij L. & Markova, Yulia V., 2022. "Dynamics of senses of new physics discourse: Co-keywords analysis," Journal of Informetrics, Elsevier, vol. 16(1).
    8. Lei Hou & Jiashan Luo & Xue Pan, 2022. "Research Topic Specialization of Universities in Information Science and Library Science and Its Impact on Inter-University Collaboration," Sustainability, MDPI, vol. 14(15), pages 1-14, July.
    9. Feng Shi & James Evans, 2023. "Surprising combinations of research contents and contexts are related to impact and emerge with scientific outsiders from distant disciplines," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Zhang, Yang & Wang, Yang & Du, Haifeng & Havlin, Shlomo, 2024. "Delayed citation impact of interdisciplinary research," Journal of Informetrics, Elsevier, vol. 18(1).
    11. Cui, Haochuan & Zeng, An & Fan, Ying & Di, Zengru, 2021. "Quantifying the impact of a teamwork publication," Journal of Informetrics, Elsevier, vol. 15(4).
    12. Buehling, Kilian, 2021. "Changing research topic trends as an effect of publication rankings – The case of German economists and the Handelsblatt Ranking," Journal of Informetrics, Elsevier, vol. 15(3).
    13. Alonso Rodríguez-Navarro & Ricardo Brito, 2022. "The link between countries’ economic and scientific wealth has a complex dependence on technological activity and research policy," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2871-2896, May.
    14. Ma, Yinghong & Song, Le & Ji, Zhaoxun & Wang, Qian & Yu, Qinglin, 2020. "Scholar’s career switch adhesive with research topics: An evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    15. Zhang, Guangyao & Xu, Shenmeng & Sun, Yao & Jiang, Chunlin & Wang, Xianwen, 2022. "Understanding the peer review endeavor in scientific publishing," Journal of Informetrics, Elsevier, vol. 16(2).
    16. Liang, Zhentao & Ba, Zhichao & Mao, Jin & Li, Gang, 2023. "Research complexity increases with scientists’ academic age: Evidence from library and information science," Journal of Informetrics, Elsevier, vol. 17(1).
    17. Ma, Guoshuai & Yuhua, Qian & Zhang, Yayu & Yan, Hongren & Cheng, Honghong & Hu, Zhiguo, 2022. "The recognition of kernel research team," Journal of Informetrics, Elsevier, vol. 16(4).
    18. Dong, Ke & Wu, Jiang & Wang, Kaili, 2021. "On the inequality of citation counts of all publications of individual authors," Journal of Informetrics, Elsevier, vol. 15(4).
    19. Lubna Zafar & Nayyer Masood & Samreen Ayaz, 2023. "Impact of field of study (FoS) on authors’ citation trend," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(4), pages 2557-2576, April.
    20. Chao Min & Qingyu Chen & Erjia Yan & Yi Bu & Jianjun Sun, 2021. "Citation cascade and the evolution of topic relevance," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(1), pages 110-127, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:17:y:2023:i:2:s1751157723000342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.