IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v18y2024i2s1751157724000051.html
   My bibliography  Save this article

Exploration, exploitation and funding success: Evidence from junior scientists supported by the Chinese Young Scientists Fund

Author

Listed:
  • Guo, Liying
  • Wang, Yang
  • Li, Meiling

Abstract

Scientists’ choice of research questions is often shaped by an “essential tension” between exploring new or risky ideas and exploiting conventional wisdoms. However, we still lack understanding regarding the association between exploration, exploitation, and funding success, which is a crucial aspect of career development for junior scientists in today’s highly competitive environment. In this study, we adopt a systematic approach to analyze the career histories of over 20,000 junior scientists supported by the Chinese Young Scientists Fund. We quantitatively assess the level of exploration during the Young Scientists Fund cycle using two approaches, and focus on the association of exploration on securing subsequent funding. Despite the positive relationship between exploring new topics and novelty, our findings reveal that junior scientists who choose to explore new research topics in the first funding cycle face significantly lower chances of obtaining subsequent funding. Additionally, among those who do secure subsequent funding, individuals who engage in exploratory research in the first funding cycle tend to wait longer. Furthermore, our study examines the predictive power of various observed variables at the individual level in predicting funding success, finding modest predictive power. Overall, this work sheds light on the underlying patterns of individual careers and has policy implications in supporting junior scientists engaged in exploratory research. By unraveling the dynamics between exploration, exploitation, and funding success, our study offers valuable insights to nurture early career researchers.

Suggested Citation

  • Guo, Liying & Wang, Yang & Li, Meiling, 2024. "Exploration, exploitation and funding success: Evidence from junior scientists supported by the Chinese Young Scientists Fund," Journal of Informetrics, Elsevier, vol. 18(2).
  • Handle: RePEc:eee:infome:v:18:y:2024:i:2:s1751157724000051
    DOI: 10.1016/j.joi.2024.101492
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157724000051
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2024.101492?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gustavo Manso, 2011. "Motivating Innovation," Journal of Finance, American Finance Association, vol. 66(5), pages 1823-1860, October.
    2. Li Tang & Guangyuan Hu, 2013. "Tracing the footprint of knowledge spillover: Evidence from U.S.–China collaboration in nanotechnology," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(9), pages 1791-1801, September.
    3. Guan, Jiancheng & Yan, Yan & Zhang, Jing Jing, 2017. "The impact of collaboration and knowledge networks on citations," Journal of Informetrics, Elsevier, vol. 11(2), pages 407-422.
    4. An Zeng & Zhesi Shen & Jianlin Zhou & Ying Fan & Zengru Di & Yougui Wang & H. Eugene Stanley & Shlomo Havlin, 2019. "Increasing trend of scientists to switch between topics," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    5. Ayoubi, Charles & Barbosu, Sandra & Pezzoni, Michele & Visentin, Fabiana, 2020. "What matters in funding: The value of research coherence and alignment in evaluators' decisions," MERIT Working Papers 2020-010, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    6. Benjamin F. Jones, 2010. "Age and Great Invention," The Review of Economics and Statistics, MIT Press, vol. 92(1), pages 1-14, February.
    7. James G. March, 1991. "Exploration and Exploitation in Organizational Learning," Organization Science, INFORMS, vol. 2(1), pages 71-87, February.
    8. Hart E. Posen & Daniel A. Levinthal, 2012. "Chasing a Moving Target: Exploitation and Exploration in Dynamic Environments," Management Science, INFORMS, vol. 58(3), pages 587-601, March.
    9. Shiji Chen & Yanhui Song & Fei Shu & Vincent Larivière, 2022. "Interdisciplinarity and impact: the effects of the citation time window," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2621-2642, May.
    10. Pierre Azoulay & Joshua S. Graff Zivin & Gustavo Manso, 2011. "Incentives and creativity: evidence from the academic life sciences," RAND Journal of Economics, RAND Corporation, vol. 42(3), pages 527-554, September.
    11. Yang Wang & Benjamin F. Jones & Dashun Wang, 2019. "Early-career setback and future career impact," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    12. Wang, Jian & Veugelers, Reinhilde & Stephan, Paula, 2017. "Bias against novelty in science: A cautionary tale for users of bibliometric indicators," Research Policy, Elsevier, vol. 46(8), pages 1416-1436.
    13. Weihua Li & Tomaso Aste & Fabio Caccioli & Giacomo Livan, 2019. "Early coauthorship with top scientists predicts success in academic careers," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    14. Michael Park & Erin Leahey & Russell J. Funk, 2023. "Papers and patents are becoming less disruptive over time," Nature, Nature, vol. 613(7942), pages 138-144, January.
    15. Tao Jia & Dashun Wang & Boleslaw K. Szymanski, 2017. "Quantifying patterns of research-interest evolution," Nature Human Behaviour, Nature, vol. 1(4), pages 1-7, April.
    16. Chen, Shiji & Arsenault, Clément & Larivière, Vincent, 2015. "Are top-cited papers more interdisciplinary?," Journal of Informetrics, Elsevier, vol. 9(4), pages 1034-1046.
    17. Li Tang & Guangyuan Hu, 2013. "Tracing the footprint of knowledge spillover: Evidence from U.S.–China collaboration in nanotechnology," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(9), pages 1791-1801, September.
    18. Zhu, Wanying & Jin, Ching & Ma, Yifang & Xu, Cong, 2023. "Earlier recognition of scientific excellence enhances future achievements and promotes persistence," Journal of Informetrics, Elsevier, vol. 17(2).
    19. Diana Purwitasari & Chastine Fatichah & Surya Sumpeno & Christian Steglich & Mauridhi Hery Purnomo, 2020. "Identifying collaboration dynamics of bipartite author-topic networks with the influences of interest changes," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1407-1443, March.
    20. Oded Berger-Tal & Jonathan Nathan & Ehud Meron & David Saltz, 2014. "The Exploration-Exploitation Dilemma: A Multidisciplinary Framework," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-8, April.
    21. Harrison Searles, 2017. "César Hidalgo: Why information grows: The evolution of order, from atoms to economies," The Review of Austrian Economics, Springer;Society for the Development of Austrian Economics, vol. 30(1), pages 147-151, March.
    22. repec:nas:journl:v:115:y:2018:p:4887-4890 is not listed on IDEAS
    23. Yu, Xiaoyao & Szymanski, Boleslaw K. & Jia, Tao, 2021. "Become a better you: Correlation between the change of research direction and the change of scientific performance," Journal of Informetrics, Elsevier, vol. 15(3).
    24. Yang Yang & Tanya Y. Tian & Teresa K. Woodruff & Benjamin F. Jones & Brian Uzzi, 2022. "Gender-diverse teams produce more novel and higher-impact scientific ideas," Decision Analysis, INFORMS, vol. 119(36), pages 2200841119-, September.
    25. Huang, Shengzhi & Huang, Yong & Bu, Yi & Luo, Zhuoran & Lu, Wei, 2023. "Disclosing the interactive mechanism behind scientists’ topic selection behavior from the perspective of the productivity and the impact," Journal of Informetrics, Elsevier, vol. 17(2).
    26. Lin, Yiling & Evans, James A. & Wu, Lingfei, 2022. "New directions in science emerge from disconnection and discord," Journal of Informetrics, Elsevier, vol. 16(1).
    27. Yang Yang & Tanya Y. Tian & Teresa K. Woodruff & Benjamin F. Jones & Brian Uzzi, 2022. "Gender-diverse teams produce more novel and higher-impact scientific ideas," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 119(36), pages 2200841119-, September.
    28. Fontana, Magda & Iori, Martina & Montobbio, Fabio & Sinatra, Roberta, 2020. "New and atypical combinations: An assessment of novelty and interdisciplinarity," Research Policy, Elsevier, vol. 49(7).
    29. Jacob, Brian A. & Lefgren, Lars, 2011. "The impact of research grant funding on scientific productivity," Journal of Public Economics, Elsevier, vol. 95(9), pages 1168-1177.
    30. Borrett, Stuart R. & Moody, James & Edelmann, Achim, 2014. "The rise of Network Ecology: Maps of the topic diversity and scientific collaboration," Ecological Modelling, Elsevier, vol. 293(C), pages 111-127.
    31. Li Tang & Guangyuan Hu & Weishu Liu, 2017. "Funding acknowledgment analysis: Queries and caveats," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(3), pages 790-794, March.
    32. Sergey Kolesnikov & Eriko Fukumoto & Barry Bozeman, 2018. "Researchers’ risk-smoothing publication strategies: Is productivity the enemy of impact?," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1995-2017, September.
    33. Ruijie Wang & Yuhao Zhou & An Zeng, 2023. "Evaluating scientists by citation and disruption of their representative works," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1689-1710, March.
    34. Lu Liu & Yang Wang & Roberta Sinatra & C. Lee Giles & Chaoming Song & Dashun Wang, 2018. "Hot streaks in artistic, cultural, and scientific careers," Nature, Nature, vol. 559(7714), pages 396-399, July.
    35. Lu Liu & Nima Dehmamy & Jillian Chown & C. Lee Giles & Dashun Wang, 2021. "Understanding the onset of hot streaks across artistic, cultural, and scientific careers," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    36. Lindell Bromham & Russell Dinnage & Xia Hua, 2016. "Interdisciplinary research has consistently lower funding success," Nature, Nature, vol. 534(7609), pages 684-687, June.
    37. Russell J. Funk & Jason Owen-Smith, 2017. "A Dynamic Network Measure of Technological Change," Management Science, INFORMS, vol. 63(3), pages 791-817, March.
    38. Heinze, Thomas & Shapira, Philip & Rogers, Juan D. & Senker, Jacqueline M., 2009. "Organizational and institutional influences on creativity in scientific research," Research Policy, Elsevier, vol. 38(4), pages 610-623, May.
    39. Li Hou & Qiang Wu & Yundong Xie, 2022. "Does early publishing in top journals really predict long-term scientific success in the business field?," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6083-6107, November.
    40. Rachel Heyard & Hanna Hottenrott, 2021. "The value of research funding for knowledge creation and dissemination: A study of SNSF Research Grants," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-16, December.
    41. Chul Lee & Gunno Park & Klaus Marhold & Jina Kang, 2017. "Top management team’s innovation-related characteristics and the firm’s explorative R&D: an analysis based on patent data," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 639-663, May.
    42. Lutz Bornmann & Hans-Dieter Daniel, 2006. "Selecting scientific excellence through committee peer review - A citation analysis of publications previously published to approval or rejection of post-doctoral research fellowship applicants," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(3), pages 427-440, September.
    43. Filippo Radicchi & Claudio Castellano, 2013. "Analysis of bibliometric indicators for individual scholars in a large data set," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(3), pages 627-637, December.
    44. Wang, Jian & Hicks, Diana, 2015. "Scientific teams: Self-assembly, fluidness, and interdependence," Journal of Informetrics, Elsevier, vol. 9(1), pages 197-207.
    45. Albert Banal-Estañol & Ines Macho-Stadler & David Pérez-Castrillo, 2016. "Key Success Drivers in Public Research Grants: Funding the Seeds of Radical Innovation in Academia?," CESifo Working Paper Series 5852, CESifo.
    46. Wang, Jian & Lee, You-Na & Walsh, John P., 2018. "Funding model and creativity in science: Competitive versus block funding and status contingency effects," Research Policy, Elsevier, vol. 47(6), pages 1070-1083.
    47. Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
    48. Philip Mirowski, 1983. "An Evolutionary Theory of Economics Change: A Review Article," Journal of Economic Issues, Taylor & Francis Journals, vol. 17(3), pages 757-768, September.
    49. Haeussler, Carolin & Sauermann, Henry, 2020. "Division of labor in collaborative knowledge production: The role of team size and interdisciplinarity," Research Policy, Elsevier, vol. 49(6).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Liu & Benjamin F. Jones & Brian Uzzi & Dashun Wang, 2023. "Data, measurement and empirical methods in the science of science," Nature Human Behaviour, Nature, vol. 7(7), pages 1046-1058, July.
    2. Zhang, Yang & Wang, Yang & Du, Haifeng & Havlin, Shlomo, 2024. "Delayed citation impact of interdisciplinary research," Journal of Informetrics, Elsevier, vol. 18(1).
    3. Yue Wang & Ning Li & Bin Zhang & Qian Huang & Jian Wu & Yang Wang, 2023. "The effect of structural holes on producing novel and disruptive research in physics," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1801-1823, March.
    4. Yu, Xiaoyao & Szymanski, Boleslaw K. & Jia, Tao, 2021. "Become a better you: Correlation between the change of research direction and the change of scientific performance," Journal of Informetrics, Elsevier, vol. 15(3).
    5. Yang, Alex J., 2024. "Unveiling the impact and dual innovation of funded research," Journal of Informetrics, Elsevier, vol. 18(1).
    6. Wang, Jian, 2016. "Knowledge creation in collaboration networks: Effects of tie configuration," Research Policy, Elsevier, vol. 45(1), pages 68-80.
    7. Kwon, Seokbeom, 2022. "Interdisciplinary knowledge integration as a unique knowledge source for technology development and the role of funding allocation," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    8. Wu, Lingfei & Kittur, Aniket & Youn, Hyejin & Milojević, Staša & Leahey, Erin & Fiore, Stephen M. & Ahn, Yong-Yeol, 2022. "Metrics and mechanisms: Measuring the unmeasurable in the science of science," Journal of Informetrics, Elsevier, vol. 16(2).
    9. Wang, Cheng-Jun & Yan, Lihan & Cui, Haochuan, 2023. "Unpacking the essential tension of knowledge recombination: Analyzing the impact of knowledge spanning on citation impact and disruptive innovation," Journal of Informetrics, Elsevier, vol. 17(4).
    10. Zhang, Ming-Ze & Wang, Tang-Rong & Lyu, Peng-Hui & Chen, Qi-Mei & Li, Ze-Xia & Ngai, Eric W.T., 2024. "Impact of gender composition of academic teams on disruptive output," Journal of Informetrics, Elsevier, vol. 18(2).
    11. Feng Shi & James Evans, 2023. "Surprising combinations of research contents and contexts are related to impact and emerge with scientific outsiders from distant disciplines," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Alex J. Yang & Huimin Xu & Ying Ding & Meijun Liu, 2024. "Unveiling the dynamics of team age structure and its impact on scientific innovation," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(10), pages 6127-6148, October.
    13. Sam Arts & Nicola Melluso & Reinhilde Veugelers, 2023. "Beyond Citations: Measuring Novel Scientific Ideas and their Impact in Publication Text," Papers 2309.16437, arXiv.org, revised Dec 2024.
    14. Zhang, Lin & Qi, Fan & Sivertsen, Gunnar & Liang, Liming & Campbell, David, 2023. "Gender differences in the patterns and consequences of changing specialization in scientific careers," SocArXiv ep5bx, Center for Open Science.
    15. Xin Liu & Yi Bu & Ming Li & Jiang Li, 2024. "Monodisciplinary collaboration disrupts science more than multidisciplinary collaboration," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 75(1), pages 59-78, January.
    16. Kok, Holmer & Faems, Dries & de Faria, Pedro, 2022. "Pork Barrel or Barrel of Gold? Examining the performance implications of earmarking in public R&D grants," Research Policy, Elsevier, vol. 51(7).
    17. Hou, Jianhua & Wang, Dongyi & Li, Jing, 2022. "A new method for measuring the originality of academic articles based on knowledge units in semantic networks," Journal of Informetrics, Elsevier, vol. 16(3).
    18. Li Hou & Qiang Wu & Yundong Xie, 2022. "Does early publishing in top journals really predict long-term scientific success in the business field?," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6083-6107, November.
    19. Ao, Weiyi & Lyu, Dongqing & Ruan, Xuanmin & Li, Jiang & Cheng, Ying, 2023. "Scientific creativity patterns in scholars’ academic careers: Evidence from PubMed," Journal of Informetrics, Elsevier, vol. 17(4).
    20. Corsini, Alberto & Pezzoni, Michele, 2023. "Does grant funding foster research impact? Evidence from France," Journal of Informetrics, Elsevier, vol. 17(4).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:18:y:2024:i:2:s1751157724000051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.