IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v16y2022i4s1751157722000918.html
   My bibliography  Save this article

The recognition of kernel research team

Author

Listed:
  • Ma, Guoshuai
  • Yuhua, Qian
  • Zhang, Yayu
  • Yan, Hongren
  • Cheng, Honghong
  • Hu, Zhiguo

Abstract

Scientific projects are usually created by teams rather than individuals since the realizations of the projects need complex instruments and multidisciplinary cooperations. Although there is a myriad of reports on the assembly mechanisms of research teams, most are restricted to the empirical analysis of some special teams, and they failed to analyze the research team from big co-authorship networks. Inspired by L. G. Adams’s “basic elements” of the successful research team, this paper proposed a method for identifying the kernel research teams from the co-author networks. We create a database containing all articles published in the journals recommended by the China Computer Federation (CCF), based on which the networks of ten subfields in computer science are constructed. In the empirical analysis, a handful of scholars are found to contribute a large portion of literature and gather numerous citations; this proves the presence of the Pareto principle in academic networks. Furthermore, the information of 34 famous research teams is collected and analyzed; our study shows most leaders and members who belong to these 34 teams can be recovered from the network of kernel research teams even when more than 70% of authors are removed from the original co-authorship network. Finally, in order to take full advantage of the authors’ research interests, we improve the original label propagation method to guarantee good performance in our dataset.

Suggested Citation

  • Ma, Guoshuai & Yuhua, Qian & Zhang, Yayu & Yan, Hongren & Cheng, Honghong & Hu, Zhiguo, 2022. "The recognition of kernel research team," Journal of Informetrics, Elsevier, vol. 16(4).
  • Handle: RePEc:eee:infome:v:16:y:2022:i:4:s1751157722000918
    DOI: 10.1016/j.joi.2022.101339
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157722000918
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2022.101339?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olga Popova & Dmitry Romanov & Alexander Drozdov & Alexander Gerashchenko, 2017. "Citation-based criteria of the significance of the research activity of scientific teams," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1179-1202, September.
    2. An Zeng & Zhesi Shen & Jianlin Zhou & Ying Fan & Zengru Di & Yougui Wang & H. Eugene Stanley & Shlomo Havlin, 2019. "Increasing trend of scientists to switch between topics," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    3. Lingfei Wu & Dashun Wang & James A. Evans, 2019. "Large teams develop and small teams disrupt science and technology," Nature, Nature, vol. 566(7744), pages 378-382, February.
    4. Borut Lužar & Zoran Levnajić & Janez Povh & Matjaž Perc, 2014. "Community Structure and the Evolution of Interdisciplinarity in Slovenia's Scientific Collaboration Network," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-5, April.
    5. Alberto Pepe, 2011. "The relationship between acquaintanceship and coauthorship in scientific collaboration networks," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(11), pages 2121-2132, November.
    6. T. S. Evans & R. Lambiotte & P. Panzarasa, 2011. "Community structure and patterns of scientific collaboration in Business and Management," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 381-396, October.
    7. Gergely Palla & Imre Derényi & Illés Farkas & Tamás Vicsek, 2005. "Uncovering the overlapping community structure of complex networks in nature and society," Nature, Nature, vol. 435(7043), pages 814-818, June.
    8. Hou, Lei & Pan, Yueling & Zhu, Jonathan J.H., 2021. "Impact of scientific, economic, geopolitical, and cultural factors on international research collaboration," Journal of Informetrics, Elsevier, vol. 15(3).
    9. András Schubert, 2012. "A Hirsch-type index of co-author partnership ability," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(1), pages 303-308, April.
    10. Alberto Pepe, 2011. "The relationship between acquaintanceship and coauthorship in scientific collaboration networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(11), pages 2121-2132, November.
    11. Yu, Xiaoyao & Szymanski, Boleslaw K. & Jia, Tao, 2021. "Become a better you: Correlation between the change of research direction and the change of scientific performance," Journal of Informetrics, Elsevier, vol. 15(3).
    12. Gergely Palla & Albert-László Barabási & Tamás Vicsek, 2007. "Quantifying social group evolution," Nature, Nature, vol. 446(7136), pages 664-667, April.
    13. Lungeanu, Alina & Huang, Yun & Contractor, Noshir S., 2014. "Understanding the assembly of interdisciplinary teams and its impact on performance," Journal of Informetrics, Elsevier, vol. 8(1), pages 59-70.
    14. Pinto, Pablo E. & Vallone, Andres & Honores, Guillermo, 2019. "The structure of collaboration networks: Findings from three decades of co-invention patents in Chile," Journal of Informetrics, Elsevier, vol. 13(4).
    15. Yuxian Liu & Yishan Wu & Sandra Rousseau & Ronald Rousseau, 2020. "Reflections on and a short review of the science of team science," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 937-950, November.
    16. An Zeng & Ying Fan & Zengru Di & Yougui Wang & Shlomo Havlin, 2021. "Fresh teams are associated with original and multidisciplinary research," Nature Human Behaviour, Nature, vol. 5(10), pages 1314-1322, October.
    17. Kosmulski, Marek, 2012. "The order in the lists of authors in multi-author papers revisited," Journal of Informetrics, Elsevier, vol. 6(4), pages 639-644.
    18. Wang, Jian & Hicks, Diana, 2015. "Scientific teams: Self-assembly, fluidness, and interdependence," Journal of Informetrics, Elsevier, vol. 9(1), pages 197-207.
    19. Jianlin Zhou & An Zeng & Ying Fan & Zengru Di, 2018. "Identifying important scholars via directed scientific collaboration networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 1327-1343, March.
    20. Smith, Thomas Bryan & Vacca, Raffaele & Krenz, Till & McCarty, Christopher, 2021. "Great minds think alike, or do they often differ? Research topic overlap and the formation of scientific teams," Journal of Informetrics, Elsevier, vol. 15(1).
    21. Cui, Haochuan & Zeng, An & Fan, Ying & Di, Zengru, 2021. "Quantifying the impact of a teamwork publication," Journal of Informetrics, Elsevier, vol. 15(4).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Meijun & Jaiswal, Ajay & Bu, Yi & Min, Chao & Yang, Sijie & Liu, Zhibo & Acuña, Daniel & Ding, Ying, 2022. "Team formation and team impact: The balance between team freshness and repeat collaboration," Journal of Informetrics, Elsevier, vol. 16(4).
    2. Tian, Yunpei & Li, Gang & Mao, Jin, 2023. "Predicting the evolution of scientific communities by interpretable machine learning approaches," Journal of Informetrics, Elsevier, vol. 17(2).
    3. Lu Liu & Benjamin F. Jones & Brian Uzzi & Dashun Wang, 2023. "Data, measurement and empirical methods in the science of science," Nature Human Behaviour, Nature, vol. 7(7), pages 1046-1058, July.
    4. Yu, Shuo & Alqahtani, Fayez & Tolba, Amr & Lee, Ivan & Jia, Tao & Xia, Feng, 2022. "Collaborative Team Recognition: A Core Plus Extension Structure," Journal of Informetrics, Elsevier, vol. 16(4).
    5. Li, Heyang & Wu, Meijun & Wang, Yougui & Zeng, An, 2022. "Bibliographic coupling networks reveal the advantage of diversification in scientific projects," Journal of Informetrics, Elsevier, vol. 16(3).
    6. Zhai, Li & Yan, Xiangbin, 2022. "A directed collaboration network for exploring the order of scientific collaboration," Journal of Informetrics, Elsevier, vol. 16(4).
    7. Hamid Bouabid & Hind Achachi, 2022. "Size of science team at university and internal co-publications: science policy implications," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 6993-7013, December.
    8. Lei Hou & Jiashan Luo & Xue Pan, 2022. "Research Topic Specialization of Universities in Information Science and Library Science and Its Impact on Inter-University Collaboration," Sustainability, MDPI, vol. 14(15), pages 1-14, July.
    9. Zhe Cheng & Yihuan Zou & Yueyang Zheng, 2024. "A method for identifying different types of university research teams," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-15, December.
    10. Guo, Liying & Wang, Yang & Li, Meiling, 2024. "Exploration, exploitation and funding success: Evidence from junior scientists supported by the Chinese Young Scientists Fund," Journal of Informetrics, Elsevier, vol. 18(2).
    11. Ruijie Wang & Yuhao Zhou & An Zeng, 2023. "Evaluating scientists by citation and disruption of their representative works," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1689-1710, March.
    12. Hoekman, Jarno & Rake, Bastian, 2024. "Geography of authorship: How geography shapes authorship attribution in big team science," Research Policy, Elsevier, vol. 53(2).
    13. Yue Wang & Ning Li & Bin Zhang & Qian Huang & Jian Wu & Yang Wang, 2023. "The effect of structural holes on producing novel and disruptive research in physics," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1801-1823, March.
    14. Yu, Xiaoyao & Szymanski, Boleslaw K. & Jia, Tao, 2021. "Become a better you: Correlation between the change of research direction and the change of scientific performance," Journal of Informetrics, Elsevier, vol. 15(3).
    15. Blagus, Neli & Šubelj, Lovro & Weiss, Gregor & Bajec, Marko, 2015. "Sampling promotes community structure in social and information networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 206-215.
    16. Bai, Xiwen & Ma, Zhongjun & Zhou, Yaoming, 2023. "Data-driven static and dynamic resilience assessment of the global liner shipping network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    17. Jinyang Dong & Jiamou Liu & Tiezhong Liu, 2021. "The impact of top scientists on the community development of basic research directed by government funding: evidence from program 973 in China," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(10), pages 8561-8579, October.
    18. Federico Botta & Charo I del Genio, 2017. "Analysis of the communities of an urban mobile phone network," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-14, March.
    19. Fontana, Magda & Iori, Martina & Leone Sciabolazza, Valerio & Souza, Daniel, 2022. "The interdisciplinarity dilemma: Public versus private interests," Research Policy, Elsevier, vol. 51(7).
    20. Xing, Yanmeng & Wang, Fenghua & Zeng, An & Ying, Fan, 2021. "Solving the cold-start problem in scientific credit allocation," Journal of Informetrics, Elsevier, vol. 15(3).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:16:y:2022:i:4:s1751157722000918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.