IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v18y2024i3s1751157724000713.html
   My bibliography  Save this article

Investigating clinical links in edge-labeled citation networks of biomedical research: A translational science perspective

Author

Listed:
  • Li, Xin
  • Tang, Xuli
  • Lu, Wei

Abstract

While clinical citations have been widely used as the preeminent measure of the clinical impact of biomedical paper, there has been a scarcity of in-depth studies exploring their temporal and structural characteristics, as well as its influence on the clinical translation. To fill this gap, we categorized biomedical papers and their citations into four groups from the translational science perspective: basic, clinical, mixed, and human-related. Subsequently, we constructed an edge-labeled citation network and four clinical translation networks. Our analysis encompassed 114,342 papers in the field of Alzheimer's Disease, accompanied by 5,161,626 citations, of which 2.77 % were clinical citations, 18.77 % basic citations, 41.85 % mixed citations, and 36.61 % human-related citations. First, utilizing time- and structure-randomized networks, we conducted a quantitative analysis of clinical citations' incidence patterns, impact assortativity, temporal occurrence patterns, and temporal co-location patterns throughout the lifecycles of biomedical research. Second, in comparison to control groups, we evaluated the short- and long-term impacts of different types of citations on the academic influence and clinical translation of biomedical research. Our findings reveal that clinical citations effectively bolster the academic influence of biomedical papers, and this positive effect appears to amplify over time. Conversely, while basic, mixed, and human-related citations may initially aid in the clinical translation of biomedical research, over 70 % of them exhibit an inhibitory effect on clinical translation in the long run. These findings afford us a deep and specific understanding of how clinical citations operate within the context of biomedical papers, thereby serving as a crucial guide for effectively promoting the clinical translation of biomedical research.

Suggested Citation

  • Li, Xin & Tang, Xuli & Lu, Wei, 2024. "Investigating clinical links in edge-labeled citation networks of biomedical research: A translational science perspective," Journal of Informetrics, Elsevier, vol. 18(3).
  • Handle: RePEc:eee:infome:v:18:y:2024:i:3:s1751157724000713
    DOI: 10.1016/j.joi.2024.101558
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157724000713
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2024.101558?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xin Li & Xuli Tang & Wei Lu, 2024. "How biomedical papers accumulated their clinical citations: a large-scale retrospective analysis based on PubMed," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(6), pages 3315-3339, June.
    2. Mike Thelwall & Kayvan Kousha, 2016. "Are citations from clinical trials evidence of higher impact research? An analysis of ClinicalTrials.gov," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 1341-1351, November.
    3. Li, Xin & Tang, Xuli & Cheng, Qikai, 2022. "Predicting the clinical citation count of biomedical papers using multilayer perceptron neural network," Journal of Informetrics, Elsevier, vol. 16(4).
    4. Yang Zhang & Rongying Zhao & Yufei Wang & Haihua Chen & Adnan Mahmood & Munazza Zaib & Wei Emma Zhang & Quan Z. Sheng, 2022. "Towards employing native information in citation function classification," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6557-6577, November.
    5. Chang, Sheryl L. & Piraveenan, Mahendra & Prokopenko, Mikhail, 2020. "Impact of network assortativity on epidemic and vaccination behaviour," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    6. Li, Xin & Tang, Xuli, 2021. "Characterizing interdisciplinarity in drug research: A translational science perspective," Journal of Informetrics, Elsevier, vol. 15(4).
    7. Julia Poncela-Casasnovas & Martin Gerlach & Nathan Aguirre & Luís A. N. Amaral, 2019. "Large-scale analysis of micro-level citation patterns reveals nuanced selection criteria," Nature Human Behaviour, Nature, vol. 3(6), pages 568-575, June.
    8. Yang Zhang & Rongying Zhao & Yufei Wang & Haihua Chen & Adnan Mahmood & Munazza Zaib & Wei Emma Zhang & Quan Z. Sheng, 2022. "Correction to: Towards employing native information in citation function classification," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6579-6579, November.
    9. Ke, Qing, 2020. "The citation disadvantage of clinical research," Journal of Informetrics, Elsevier, vol. 14(1).
    10. Francis Narin & Gabriel Pinski & Helen Hofer Gee, 1976. "Structure of the Biomedical Literature," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 27(1), pages 25-45, January.
    11. B Ian Hutchins & Xin Yuan & James M Anderson & George M Santangelo, 2016. "Relative Citation Ratio (RCR): A New Metric That Uses Citation Rates to Measure Influence at the Article Level," PLOS Biology, Public Library of Science, vol. 14(9), pages 1-25, September.
    12. B Ian Hutchins & Matthew T Davis & Rebecca A Meseroll & George M Santangelo, 2019. "Predicting translational progress in biomedical research," PLOS Biology, Public Library of Science, vol. 17(10), pages 1-25, October.
    13. Yeon Hak Kim & Aaron D. Levine & Eric J. Nehl & John P. Walsh, 2020. "A bibliometric measure of translational science," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2349-2382, December.
    14. Grant Lewison & Guillermo Paraje, 2004. "The classification of biomedical journals by research level," Scientometrics, Springer;Akadémiai Kiadó, vol. 60(2), pages 145-157, June.
    15. Xin Li & Xuli Tang & Wei Lu, 2023. "Tracking biomedical articles along the translational continuum: a measure based on biomedical knowledge representation," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(2), pages 1295-1319, February.
    16. Dag W Aksnes, 2003. "Characteristics of highly cited papers," Research Evaluation, Oxford University Press, vol. 12(3), pages 159-170, December.
    17. Boyack, Kevin W. & Patek, Michael & Ungar, Lyle H. & Yoon, Patrick & Klavans, Richard, 2014. "Classification of individual articles from all of science by research level," Journal of Informetrics, Elsevier, vol. 8(1), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongyu Zang & Chunli Liu, 2023. "Exploring the clinical translation intensity of papers published by the world’s top scientists in basic medicine," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(4), pages 2371-2416, April.
    2. Xin Li & Xuli Tang & Wei Lu, 2023. "Tracking biomedical articles along the translational continuum: a measure based on biomedical knowledge representation," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(2), pages 1295-1319, February.
    3. Xin Li & Xuli Tang & Wei Lu, 2024. "How biomedical papers accumulated their clinical citations: a large-scale retrospective analysis based on PubMed," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(6), pages 3315-3339, June.
    4. Li, Xin & Tang, Xuli & Cheng, Qikai, 2022. "Predicting the clinical citation count of biomedical papers using multilayer perceptron neural network," Journal of Informetrics, Elsevier, vol. 16(4).
    5. Higashide, Noriyuki & Zhang, Yi & Asatani, Kimitaka & Miura, Takahiro & Sakata, Ichiro, 2024. "Quantifying advances from basic research to applied research in material science," Technovation, Elsevier, vol. 135(C).
    6. Li, Xin & Tang, Xuli, 2021. "Characterizing interdisciplinarity in drug research: A translational science perspective," Journal of Informetrics, Elsevier, vol. 15(4).
    7. Rons, Nadine, 2018. "Bibliometric approximation of a scientific specialty by combining key sources, title words, authors and references," Journal of Informetrics, Elsevier, vol. 12(1), pages 113-132.
    8. Mike Thelwall & Kayvan Kousha & Mahshid Abdoli, 2017. "Is medical research informing professional practice more highly cited? Evidence from AHFS DI Essentials in drugs.com," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(1), pages 509-527, July.
    9. Du, Jian & Li, Peixin & Guo, Qianying & Tang, Xiaoli, 2019. "Measuring the knowledge translation and convergence in pharmaceutical innovation by funding-science-technology-innovation linkages analysis," Journal of Informetrics, Elsevier, vol. 13(1), pages 132-148.
    10. Belén Álvarez-Bornstein & Adrián A. Díaz-Faes & María Bordons, 2019. "What characterises funded biomedical research? Evidence from a basic and a clinical domain," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 805-825, May.
    11. Boyack, Kevin W. & Patek, Michael & Ungar, Lyle H. & Yoon, Patrick & Klavans, Richard, 2014. "Classification of individual articles from all of science by research level," Journal of Informetrics, Elsevier, vol. 8(1), pages 1-12.
    12. Kong, Ling & Wang, Dongbo, 2020. "Comparison of citations and attention of cover and non-cover papers," Journal of Informetrics, Elsevier, vol. 14(4).
    13. Kenneth Zahringer & Christos Kolympiris & Nicholas Kalaitzandonakes, 2017. "Academic knowledge quality differentials and the quality of firm innovation," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 26(5), pages 821-844.
    14. Lawson, Cornelia & Salter, Ammon, 2023. "Exploring the effect of overlapping institutional applications on panel decision-making," Research Policy, Elsevier, vol. 52(9).
    15. Indra Budi & Yaniasih Yaniasih, 2023. "Understanding the meanings of citations using sentiment, role, and citation function classifications," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 735-759, January.
    16. Bar-Ilan, Judit, 2008. "Informetrics at the beginning of the 21st century—A review," Journal of Informetrics, Elsevier, vol. 2(1), pages 1-52.
    17. Xiaorui Jiang & Jingqiang Chen, 2023. "Contextualised segment-wise citation function classification," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 5117-5158, September.
    18. Yi Zhang & Chengzhi Zhang & Philipp Mayr & Arho Suominen, 2022. "An editorial of “AI + informetrics”: multi-disciplinary interactions in the era of big data," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6503-6507, November.
    19. Lin Zhang & Gunnar Sivertsen & Huiying Du & Ying Huang & Wolfgang Glänzel, 2021. "Gender differences in the aims and impacts of research," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(11), pages 8861-8886, November.
    20. Anckaert, Paul-Emmanuel & Cassiman, David & Cassiman, Bruno, 2020. "Fostering practice-oriented and use-inspired science in biomedical research," Research Policy, Elsevier, vol. 49(2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:18:y:2024:i:3:s1751157724000713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.