IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v15y2021i2s1751157721000122.html
   My bibliography  Save this article

A new citation concept: Triangular citation in the literature

Author

Listed:
  • Liu, Yunmei
  • Yang, Liu
  • Chen, Min

Abstract

This paper introduces the concept of triangular citation that combines direct citation, co-citation and bibliographic coupling, and defines three kinds of literature used in triangular citation, namely, original Literature A, intermediary Literature B and following Literature C. Taking citation data from the CNKI database as the experimental sample, it was found that there are triangular citations in the actual citation network, with a high coverage rate. Additionally, the authors analyzed the triangular citation sample data from the different perspectives of reference time, literature type, impact factor, interdisciplinary citation, and the author’s self-citation, thereby finding the external characteristics of literature and internal trends of citation in the triangular citation. Additionally, it was concluded that the literature between A and C has an “indirect citation” mechanism. The citation characteristics of the two, i.e., A and C, are different from the direct citation relationship characteristics of A and B and B and C. The triangular citation proposed in this paper provides a new research perspective for bibliometrics, and it can be used to explore hidden literature relationships, citation mechanisms and citation motivations.

Suggested Citation

  • Liu, Yunmei & Yang, Liu & Chen, Min, 2021. "A new citation concept: Triangular citation in the literature," Journal of Informetrics, Elsevier, vol. 15(2).
  • Handle: RePEc:eee:infome:v:15:y:2021:i:2:s1751157721000122
    DOI: 10.1016/j.joi.2021.101141
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157721000122
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2021.101141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leo Egghe & Ronald Rousseau, 2002. "Co-citation, bibliographic coupling and a characterization of lattice citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 55(3), pages 349-361, November.
    2. Bo Jarneving, 2005. "A comparison of two bibliometric methods for mapping of the research front," Scientometrics, Springer;Akadémiai Kiadó, vol. 65(2), pages 245-263, November.
    3. Chaomei Chen & Diana Hicks, 2004. "Tracing knowledge diffusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 59(2), pages 199-211, February.
    4. Sidiropoulos, A. & Gogoglou, A. & Katsaros, D. & Manolopoulos, Y., 2016. "Gazing at the skyline for star scientists," Journal of Informetrics, Elsevier, vol. 10(3), pages 789-813.
    5. Edgar Schiebel, 2012. "Visualization of research fronts and knowledge bases by three-dimensional areal densities of bibliographically coupled publications and co-citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(2), pages 557-566, May.
    6. J. E. Hirsch, 2010. "An index to quantify an individual’s scientific research output that takes into account the effect of multiple coauthorship," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(3), pages 741-754, December.
    7. Mohammad Hossein Biglu, 2008. "The influence of references per paper in the SCI to Impact Factors and the Matthew Effect," Scientometrics, Springer;Akadémiai Kiadó, vol. 74(3), pages 453-470, March.
    8. Jesper W. Schneider & Rodrigo Costas, 2017. "Identifying potential “breakthrough” publications using refined citation analyses: Three related explorative approaches," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(3), pages 709-723, March.
    9. Robert R. Braam & Henk F. Moed & Anthony F. J. van Raan, 1991. "Mapping of science by combined co‐citation and word analysis. I. Structural aspects," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 42(4), pages 233-251, May.
    10. Su, Cheng & Pan, YunTao & Zhen, YanNing & Ma, Zheng & Yuan, JunPeng & Guo, Hong & Yu, ZhengLu & Ma, CaiFeng & Wu, YiShan, 2011. "PrestigeRank: A new evaluation method for papers and journals," Journal of Informetrics, Elsevier, vol. 5(1), pages 1-13.
    11. Henry Small, 1973. "Co‐citation in the scientific literature: A new measure of the relationship between two documents," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 24(4), pages 265-269, July.
    12. Kevin W. Boyack & Richard Klavans, 2010. "Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(12), pages 2389-2404, December.
    13. Dangzhi Zhao & Andreas Strotmann, 2008. "Evolution of research activities and intellectual influences in information science 1996–2005: Introducing author bibliographic‐coupling analysis," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(13), pages 2070-2086, November.
    14. Fred Y. Ye & Loet Leydesdorff, 2014. "The “academic trace” of the performance matrix: A mathematical synthesis of the h-index and the integrated impact indicator (I3)," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(4), pages 742-750, April.
    15. Liang-Chu Chen & Yen-Hsuan Lien, 2011. "Using author co-citation analysis to examine the intellectual structure of e-learning: A MIS perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(3), pages 867-886, December.
    16. Shengli Ren & Ronald Rousseau, 2002. "International visibility of Chinese scientific journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 53(3), pages 389-405, March.
    17. Lutz Bornmann & Werner Marx, 2014. "The wisdom of citing scientists," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(6), pages 1288-1292, June.
    18. Mu-Hsuan Huang & Chia-Pin Chang, 2014. "Detecting research fronts in OLED field using bibliographic coupling with sliding window," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 1721-1744, March.
    19. M. M. Kessler, 1963. "Bibliographic coupling between scientific papers," American Documentation, Wiley Blackwell, vol. 14(1), pages 10-25, January.
    20. Wang, Feifei & Jia, Chenran & Wang, Xiaohan & Liu, Junwan & Xu, Shuo & Liu, Yang & Yang, Chenyuyan, 2019. "Exploring all-author tripartite citation networks: A case study of gene editing," Journal of Informetrics, Elsevier, vol. 13(3), pages 856-873.
    21. Gangan Prathap, 2010. "Is there a place for a mock h-index?," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(1), pages 153-165, July.
    22. Olle Persson, 1994. "The intellectual base and research fronts of JASIS 1986–1990," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 45(1), pages 31-38, January.
    23. Kevin W. Boyack & Richard Klavans, 2010. "Co‐citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(12), pages 2389-2404, December.
    24. Richard S.J. Tol, 2009. "The Matthew effect defined and tested for the 100 most prolific economists," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(2), pages 420-426, February.
    25. Henry Small, 2006. "Tracking and predicting growth areas in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(3), pages 595-610, September.
    26. Richard Klavans & Kevin W. Boyack, 2006. "Identifying a better measure of relatedness for mapping science," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(2), pages 251-263, January.
    27. Chao Min & Ying Ding & Jiang Li & Yi Bu & Lei Pei & Jianjun Sun, 2018. "Innovation or imitation: The diffusion of citations," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 69(10), pages 1271-1282, October.
    28. Iman Tahamtan & Askar Safipour Afshar & Khadijeh Ahamdzadeh, 2016. "Factors affecting number of citations: a comprehensive review of the literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1195-1225, June.
    29. Yoshiyuki Takeda & Yuya Kajikawa, 2009. "Optics: a bibliometric approach to detect emerging research domains and intellectual bases," Scientometrics, Springer;Akadémiai Kiadó, vol. 78(3), pages 543-558, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moshe Blidstein & Maayan Zhitomirsky-Geffet, 2022. "Towards a new generic framework for citation network generation and analysis in the humanities," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(7), pages 4275-4297, July.
    2. Lu Huang & Yijie Cai & Erdong Zhao & Shengting Zhang & Yue Shu & Jiao Fan, 2022. "Measuring the interdisciplinarity of Information and Library Science interactions using citation analysis and semantic analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6733-6761, November.
    3. Prem Kumar Singh, 2022. "t-index: entropy based random document and citation analysis using average h-index," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(1), pages 637-660, January.
    4. Xinyuan Zhang & Qing Xie & Chaemin Song & Min Song, 2022. "Mining the evolutionary process of knowledge through multiple relationships between keywords," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 2023-2053, April.
    5. Yu, Dejian & Yan, Zhaoping, 2023. "Main path analysis considering citation structure and content: Case studies in different domains," Journal of Informetrics, Elsevier, vol. 17(1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    2. Mu-hsuan Huang & Chia-Pin Chang, 2015. "A comparative study on detecting research fronts in the organic light-emitting diode (OLED) field using bibliographic coupling and co-citation," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2041-2057, March.
    3. Yun, Jinhyuk & Ahn, Sejung & Lee, June Young, 2020. "Return to basics: Clustering of scientific literature using structural information," Journal of Informetrics, Elsevier, vol. 14(4).
    4. Xu, Shuo & Hao, Liyuan & Yang, Guancan & Lu, Kun & An, Xin, 2021. "A topic models based framework for detecting and forecasting emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    5. Tahamtan, Iman & Bornmann, Lutz, 2018. "Creativity in science and the link to cited references: Is the creative potential of papers reflected in their cited references?," Journal of Informetrics, Elsevier, vol. 12(3), pages 906-930.
    6. Ding, Ying, 2011. "Community detection: Topological vs. topical," Journal of Informetrics, Elsevier, vol. 5(4), pages 498-514.
    7. Yu-Wei Chang & Mu-Hsuan Huang & Chiao-Wen Lin, 2015. "Evolution of research subjects in library and information science based on keyword, bibliographical coupling, and co-citation analyses," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 2071-2087, December.
    8. Xuefeng Wang & Shuo Zhang & Yuqin liu, 2022. "ITGInsight–discovering and visualizing research fronts in the scientific literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6509-6531, November.
    9. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    10. Jun-Ping Qiu & Ke Dong & Hou-Qiang Yu, 2014. "Comparative study on structure and correlation among author co-occurrence networks in bibliometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1345-1360, November.
    11. Mu-Hsuan Huang & Chia-Pin Chang, 2014. "Detecting research fronts in OLED field using bibliographic coupling with sliding window," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 1721-1744, March.
    12. Mingchun Cao & Ilan Alon, 2020. "Intellectual Structure of the Belt and Road Initiative Research: A Scientometric Analysis and Suggestions for a Future Research Agenda," Sustainability, MDPI, vol. 12(17), pages 1-40, August.
    13. Chen, Kaihua & Zhang, Yi & Fu, Xiaolan, 2019. "International research collaboration: An emerging domain of innovation studies?," Research Policy, Elsevier, vol. 48(1), pages 149-168.
    14. Kraker, Peter & Schlögl, Christian & Jack, Kris & Lindstaedt, Stefanie, 2015. "Visualization of co-readership patterns from an online reference management system," Journal of Informetrics, Elsevier, vol. 9(1), pages 169-182.
    15. Song Yanhui & Wu Lijuan & Qiu Junping, 2021. "A comparative study of first and all-author bibliographic coupling analysis based on Scientometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1125-1147, February.
    16. Yun, Jinhyuk, 2022. "Generalization of bibliographic coupling and co-citation using the node split network," Journal of Informetrics, Elsevier, vol. 16(2).
    17. Prathap, Gangan & Ujum, Ephrance Abu & Kumar, Sameer & Ratnavelu, Kuru, 2021. "Scoring the resourcefulness of researchers using bibliographic coupling patterns," Journal of Informetrics, Elsevier, vol. 15(3).
    18. Nassiri, Isar & Masoudi-Nejad, Ali & Jalili, Mahdi & Moeini, Ali, 2013. "Normalized Similarity Index: An adjusted index to prioritize article citations," Journal of Informetrics, Elsevier, vol. 7(1), pages 91-98.
    19. Cai, Fang & Zheng, Wen-Jiang & Zhang, Xiao & Ji, Jiu-Ming & Zhou, Wei-Xing, 2019. "Comparing selection strategies for engineering research hotspots," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    20. Zhang, Yi & Shang, Lining & Huang, Lu & Porter, Alan L. & Zhang, Guangquan & Lu, Jie & Zhu, Donghua, 2016. "A hybrid similarity measure method for patent portfolio analysis," Journal of Informetrics, Elsevier, vol. 10(4), pages 1108-1130.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:15:y:2021:i:2:s1751157721000122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.