IDEAS home Printed from https://ideas.repec.org/a/eee/ijrema/v33y2016i3p508-523.html
   My bibliography  Save this article

Effects of TV advertising on keyword search

Author

Listed:
  • Joo, Mingyu
  • Wilbur, Kenneth C.
  • Zhu, Yi

Abstract

This paper investigates the possibility that television advertising influences online search using the AOL search dataset. It uses a novel keyword mining technique to classify keywords as brand related, category related (generic), or unrelated, distinguishing between category search and consumers' tendency to search a branded keyword. A three-level conditional choice model is estimated to determine whether hourly changes in brands' television advertising expenditures are related to deviations from baseline trends in search behaviors. The results indicate a statistically significant relationship between TV advertising and consumers' tendency to search branded keywords (e.g. “Fidelity”) rather than generic category-related keywords (e.g. “stocks”) in the dataset. The effect is largest for relatively young brands during standard business hours with an elasticity, .07, comparable to extant measurements of advertising's impact on sales. However, television advertising is not found to influence category search incidence and has limited effects on click-through rates.

Suggested Citation

  • Joo, Mingyu & Wilbur, Kenneth C. & Zhu, Yi, 2016. "Effects of TV advertising on keyword search," International Journal of Research in Marketing, Elsevier, vol. 33(3), pages 508-523.
  • Handle: RePEc:eee:ijrema:v:33:y:2016:i:3:p:508-523
    DOI: 10.1016/j.ijresmar.2014.12.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167811615000385
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijresmar.2014.12.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Punj, Girish N & Staelin, Richard, 1983. "A Model of Consumer Information Search Behavior for New Automobiles," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 9(4), pages 366-380, March.
    2. Abou Nabout, Nadia & Skiera, Bernd & Stepanchuk, Tanja & Gerstmeier, Eva, 2012. "An analysis of the profitability of fee-based compensation plans for search engine marketing," International Journal of Research in Marketing, Elsevier, vol. 29(1), pages 68-80.
    3. Bertrand, Marianne & Karlan, Dean S. & Mullainathan, Sendhil & Shafir, Eldar & Zinman, Jonathan, 2005. "What's Psychology Worth? A Field Experiment in the Consumer Credit Market," Center Discussion Papers 28441, Yale University, Economic Growth Center.
    4. Abou Nabout, Nadia & Skiera, Bernd, 2012. "Return on Quality Improvements in Search Engine Marketing," Journal of Interactive Marketing, Elsevier, vol. 26(3), pages 141-154.
    5. Preyas S. Desai & Woochoel Shin & Richard Staelin, 2014. "The Company That You Keep: When to Buy a Competitor's Keyword," Marketing Science, INFORMS, vol. 33(4), pages 485-508, July.
    6. Rishin Roy & Pradeep K. Chintagunta & Sudeep Haldar, 1996. "A Framework for Investigating Habits, “The Hand of the Past,” and Heterogeneity in Dynamic Brand Choice," Marketing Science, INFORMS, vol. 15(3), pages 280-299.
    7. Keane, Michael P, 1997. "Modeling Heterogeneity and State Dependence in Consumer Choice Behavior," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(3), pages 310-327, July.
    8. Brian T. Ratchford & Debabrata Talukdar & Myung-Soo Lee, 2007. "The Impact of the Internet on Consumers' Use of Information Sources for Automobiles: A Re-Inquiry," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 34(1), pages 111-119, March.
    9. Michael P. Keane & Kenneth I. Wolpin, 2007. "Exploring The Usefulness Of A Nonrandom Holdout Sample For Model Validation: Welfare Effects On Female Behavior," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1351-1378, November.
    10. Kenneth C. Wilbur, 2008. "A Two-Sided, Empirical Model of Television Advertising and Viewing Markets," Marketing Science, INFORMS, vol. 27(3), pages 356-378, 05-06.
    11. Kulkarni, Gauri & Ratchford, Brian T. & Kannan, P.K., 2012. "The Impact of Online and Offline Information Sources on Automobile Choice Behavior," Journal of Interactive Marketing, Elsevier, vol. 26(3), pages 167-175.
    12. Scott A. Neslin & Caroline Henderson & John Quelch, 1985. "Consumer Promotions and the Acceleration of Product Purchases," Marketing Science, INFORMS, vol. 4(2), pages 147-165.
    13. Pauwels, Koen & Leeflang, Peter S.H. & Teerling, Marije L. & Huizingh, K.R. Eelko, 2011. "Does Online Information Drive Offline Revenues?," Journal of Retailing, Elsevier, vol. 87(1), pages 1-17.
    14. McFadden, Daniel, 1974. "The measurement of urban travel demand," Journal of Public Economics, Elsevier, vol. 3(4), pages 303-328, November.
    15. Peter M. Guadagni & John D. C. Little, 1983. "A Logit Model of Brand Choice Calibrated on Scanner Data," Marketing Science, INFORMS, vol. 2(3), pages 203-238.
    16. Marianne Bertrand & Dean Karlan & Sendhil Mullainathan & Eldar Shafir & Jonathan Zinman, 2010. "What's Advertising Content Worth? Evidence from a Consumer Credit Marketing Field Experiment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 125(1), pages 263-306.
    17. Moorthy, Sridhar & Ratchford, Brian T & Talukdar, Debabrata, 1997. "Consumer Information Search Revisited: Theory and Empirical Analysis," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 23(4), pages 263-277, March.
    18. Mingyu Joo & Kenneth C. Wilbur & Bo Cowgill & Yi Zhu, 2014. "Television Advertising and Online Search," Management Science, INFORMS, vol. 60(1), pages 56-73, January.
    19. Dan Horsky & Sanjog Misra & Paul Nelson, 2006. "Observed and Unobserved Preference Heterogeneity in Brand-Choice Models," Marketing Science, INFORMS, vol. 25(4), pages 322-335, 07-08.
    20. Linli Xu & Kenneth C. Wilbur & S. Siddarth & Jorge M. Silva-Risso, 2014. "Price Advertising by Manufacturers and Dealers," Management Science, INFORMS, vol. 60(11), pages 2816-2834, November.
    21. Amin Sayedi & Kinshuk Jerath & Kannan Srinivasan, 2014. "Competitive Poaching in Sponsored Search Advertising and Its Strategic Impact on Traditional Advertising," Marketing Science, INFORMS, vol. 33(4), pages 586-608, July.
    22. Bettman, James R & Park, C Whan, 1980. "Effects of Prior Knowledge and Experience and Phase of the Choice Process on Consumer Decision Processes: A Protocol Analysis," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 7(3), pages 234-248, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kronrod, Ann & Huber, Joel, 2019. "Ad wearout wearout: How time can reverse the negative effect of frequent advertising repetition on brand preference," International Journal of Research in Marketing, Elsevier, vol. 36(2), pages 306-324.
    2. Guitart, Ivan A. & Hervet, Guillaume, 2017. "The impact of contextual television ads on online conversions: An application in the insurance industry," International Journal of Research in Marketing, Elsevier, vol. 34(2), pages 480-498.
    3. Jia Liu & Shawndra Hill, 2021. "Frontiers: Moment Marketing: Measuring Dynamics in Cross-Channel Ad Effectiveness," Marketing Science, INFORMS, vol. 40(1), pages 13-22, January.
    4. Chen He & Tobias J. Klein, 2023. "Advertising as a Reminder: Evidence from the Dutch State Lottery," Marketing Science, INFORMS, vol. 42(5), pages 892-909, September.
    5. Tunuguntla, Vaishnavi & Rakshit, Krishanu & Basu, Preetam, 2023. "Bidding for an optimal portfolio of keywords in sponsored search advertising: From generic to branded keywords," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1424-1440.
    6. Lesscher, Lisan & Lobschat, Lara & Verhoef, Peter C., 2021. "Do offline and online go hand in hand? Cross-channel and synergy effects of direct mailing and display advertising," International Journal of Research in Marketing, Elsevier, vol. 38(3), pages 678-697.
    7. Guler, Ali Umut, 2023. "Category expansion through cross-channel demand spillovers," International Journal of Research in Marketing, Elsevier, vol. 40(3), pages 629-658.
    8. Hervet, Guillaume & Guitart, Ivan A., 2022. "Increasing the effectiveness of display social media ads for startups: The role of different claims and executional characteristics," Journal of Business Research, Elsevier, vol. 153(C), pages 467-478.
    9. Chesnes, Matthew & Jin, Ginger Zhe, 2019. "Direct-to-consumer advertising and online search," Information Economics and Policy, Elsevier, vol. 46(C), pages 1-22.
    10. Försch, Steffen & de Haan, Evert, 2018. "Targeting online display ads: Choosing their frequency and spacing," International Journal of Research in Marketing, Elsevier, vol. 35(4), pages 661-672.
    11. Deepa Chandrasekaran & Raji Srinivasan & Debika Sihi, 2018. "Effects of offline ad content on online brand search: insights from super bowl advertising," Journal of the Academy of Marketing Science, Springer, vol. 46(3), pages 403-430, May.
    12. Ivan A. Guitart & Guillaume Hervet & Sarah Gelper, 2020. "Competitive advertising strategies for programmatic television," Journal of the Academy of Marketing Science, Springer, vol. 48(4), pages 753-775, July.
    13. Carsten D. Schultz, 2020. "The impact of ad positioning in search engine advertising: a multifaceted decision problem," Electronic Commerce Research, Springer, vol. 20(4), pages 945-968, December.
    14. Méndez-Suárez, Mariano & Monfort, Abel, 2020. "The amplifying effect of branded queries on advertising in multi-channel retailing," Journal of Business Research, Elsevier, vol. 112(C), pages 254-260.
    15. Bitty Balducci & Detelina Marinova, 2018. "Unstructured data in marketing," Journal of the Academy of Marketing Science, Springer, vol. 46(4), pages 557-590, July.
    16. Chen He & Tobias J. Klein, 2023. "Advertising as a Reminder: Evidence from the Dutch State Lottery," Marketing Science, INFORMS, vol. 42(5), pages 892-909, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Sonika & Ratchford, Brian T. & Prasad, Ashutosh, 2014. "Offline and Online Search in Used Durables Markets," Journal of Retailing, Elsevier, vol. 90(3), pages 301-320.
    2. Bronnenberg, Bart & Dube, Jean-Pierre, 2016. "The Formation of Consumer Brand Preferences," CEPR Discussion Papers 11648, C.E.P.R. Discussion Papers.
    3. Yashar Dehdashti & Brian T. Ratchford & Aidin Namin, 2018. "Who searches where? A new car buyer study," Journal of Marketing Analytics, Palgrave Macmillan, vol. 6(2), pages 44-52, June.
    4. Bart J. Bronnenberg & Jean-Pierre H. Dubé, 2016. "The Formation of Consumer Brand Preferences," NBER Working Papers 22691, National Bureau of Economic Research, Inc.
    5. Kannan, P.K. & Li, Hongshuang “Alice”, 2017. "Digital marketing: A framework, review and research agenda," International Journal of Research in Marketing, Elsevier, vol. 34(1), pages 22-45.
    6. Maity, Moutusy & Dass, Mayukh & Malhotra, Naresh K., 2014. "The Antecedents and Moderators of Offline Information Search: A Meta-Analysis," Journal of Retailing, Elsevier, vol. 90(2), pages 233-254.
    7. Dennis Fok & Richard Paap & Philip Hans Franses, 2014. "Incorporating Responsiveness to Marketing Efforts in Brand Choice Modeling," Econometrics, MDPI, vol. 2(1), pages 1-25, February.
    8. Alex Jiyoung Kim & Subramanian Balachander, 2023. "Coordinating traditional media advertising and online advertising in brand marketing," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1865-1879, June.
    9. Shijie Lu & Yi Zhu & Anthony Dukes, 2015. "Position Auctions with Budget Constraints: Implications for Advertisers and Publishers," Marketing Science, INFORMS, vol. 34(6), pages 897-905, November.
    10. Jang, Sungha & Prasad, Ashutosh & Ratchford, Brian T., 2017. "Consumer Search of Multiple Information Sources and its Impact on Consumer Price Satisfaction," Journal of Interactive Marketing, Elsevier, vol. 40(C), pages 24-40.
    11. Goh, Khim-Yong & Chu, Junhong & Wu, Jing, 2015. "Mobile Advertising: An Empirical Study of Temporal and Spatial Differences in Search Behavior and Advertising Response," Journal of Interactive Marketing, Elsevier, vol. 30(C), pages 34-45.
    12. Sergi Jiménez-Martín & Antonio Ladrón de Guevara-Martínez, 2009. "A state-dependent model of hybrid behavior with rational consumers in the attribute space," Investigaciones Economicas, Fundación SEPI, vol. 33(3), pages 347-383, September.
    13. Morten Overgaard Ravn & Stephanie Schmitt-Grohe & Martin Uribe, 2010. "Incomplete Cost Pass-Through Under Deep Habits," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 13(2), pages 317-332, April.
    14. Ito, Yuki & Hara, Konan & Kobayashi, Yasuki, 2020. "The effect of inertia on brand-name versus generic drug choices," Journal of Economic Behavior & Organization, Elsevier, vol. 172(C), pages 364-379.
    15. Kulkarni, Gauri & Ratchford, Brian T. & Kannan, P.K., 2012. "The Impact of Online and Offline Information Sources on Automobile Choice Behavior," Journal of Interactive Marketing, Elsevier, vol. 26(3), pages 167-175.
    16. Shijie Lu & Sha Yang, 2017. "Investigating the Spillover Effect of Keyword Market Entry in Sponsored Search Advertising," Marketing Science, INFORMS, vol. 36(6), pages 976-998, November.
    17. Baltas, George & Doyle, Peter, 2001. "Random utility models in marketing research: a survey," Journal of Business Research, Elsevier, vol. 51(2), pages 115-125, February.
    18. P. B. Seetharaman, 2004. "Modeling Multiple Sources of State Dependence in Random Utility Models: A Distributed Lag Approach," Marketing Science, INFORMS, vol. 23(2), pages 263-271, April.
    19. Ivan Guitart & Stefan Stremersch, 2021. "The impact of informational and emotional television ad content on online search and sales," Post-Print hal-03193729, HAL.
    20. Jura Liaukonyte & Thales Teixeira & Kenneth C. Wilbur, 2015. "Television Advertising and Online Shopping," Marketing Science, INFORMS, vol. 34(3), pages 311-330, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijrema:v:33:y:2016:i:3:p:508-523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-research-in-marketing/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.