IDEAS home Printed from https://ideas.repec.org/a/eee/ijocip/v42y2023ics1874548223000276.html
   My bibliography  Save this article

Assessing the comprehensive importance of power grid nodes based on DEA

Author

Listed:
  • Gao, Xin
  • Ye, Yunxia
  • Su, Wenxin
  • Chen, Linyan

Abstract

The safe and stable operation of the power grid is crucial to guarantee basic human demands and promote sustainable economic and social development. To better maintain the sound operation of the power grid, it is meaningful to analyse node importance and identify critical nodes based on the topology of the grid and its performance under cascading failure scenarios. Based on complex network theory, this paper proposes four node importance assessment metrics from static and dynamic perspectives. It performs a comprehensive importance assessment of power grid nodes based on data envelopment analysis (DEA) technology and then further identifies critical nodes in the system. A case study is conducted to validate the methodology. Results show that the suggested strategy may successfully identify the grid's key nodes with high accuracy and differentiation degree. This study is of great value for formulating reasonable emergency plans and improving power grid resilience.

Suggested Citation

  • Gao, Xin & Ye, Yunxia & Su, Wenxin & Chen, Linyan, 2023. "Assessing the comprehensive importance of power grid nodes based on DEA," International Journal of Critical Infrastructure Protection, Elsevier, vol. 42(C).
  • Handle: RePEc:eee:ijocip:v:42:y:2023:i:c:s1874548223000276
    DOI: 10.1016/j.ijcip.2023.100614
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1874548223000276
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijcip.2023.100614?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    2. Chen, Yao & Cook, Wade D. & Kao, Chiang & Zhu, Joe, 2013. "Network DEA pitfalls: Divisional efficiency and frontier projection under general network structures," European Journal of Operational Research, Elsevier, vol. 226(3), pages 507-515.
    3. Hosoe, Nobuhiro & Akiyama, Shu-ichi, 2009. "Regional electric power demand elasticities of Japan's industrial and commercial sectors," Energy Policy, Elsevier, vol. 37(11), pages 4313-4319, November.
    4. Guo, Hengdao & Zheng, Ciyan & Iu, Herbert Ho-Ching & Fernando, Tyrone, 2017. "A critical review of cascading failure analysis and modeling of power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 9-22.
    5. Wu, Yipeng & Chen, Zhilong & Zhao, Xudong & Gong, Huadong & Su, Xiaochao & Chen, Yicun, 2021. "Propagation model of cascading failure based on discrete dynamical system," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    6. Streimikiene, Dalia & Kasperowicz, Rafał, 2016. "Review of economic growth and energy consumption: A panel cointegration analysis for EU countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1545-1549.
    7. Aman Ullah & Bin wang & Jinfang Sheng & Jun Long & Nasrullah Khan & Lucia Valentina Gambuzza, 2021. "Identification of Influential Nodes via Effective Distance-based Centrality Mechanism in Complex Networks," Complexity, Hindawi, vol. 2021, pages 1-16, February.
    8. Wang, Kai & Zhang, Bu-han & Zhang, Zhe & Yin, Xiang-gen & Wang, Bo, 2011. "An electrical betweenness approach for vulnerability assessment of power grids considering the capacity of generators and load," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4692-4701.
    9. Yahui Chen & Charles van Marrewijk & Changsheng Xu & Congmin Zuo, 2022. "Does the Belt and Road Initiative affect the business environment of participating countries?," Journal of the Asia Pacific Economy, Taylor & Francis Journals, vol. 27(3), pages 425-444, July.
    10. Constâncio António Pinto & José Torres Farinha & Hugo Raposo & Diego Galar, 2022. "Stochastic versus Fuzzy Models—A Discussion Centered on the Reliability of an Electrical Power Supply System in a Large European Hospital," Energies, MDPI, vol. 15(3), pages 1-21, January.
    11. Fikret Berkes, 2007. "Understanding uncertainty and reducing vulnerability: lessons from resilience thinking," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(2), pages 283-295, May.
    12. Ma, Ling-ling & Ma, Chuang & Zhang, Hai-Feng & Wang, Bing-Hong, 2016. "Identifying influential spreaders in complex networks based on gravity formula," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 205-212.
    13. Wang, Shuliang & Lv, Wenzhuo & Zhang, Jianhua & Luan, Shengyang & Chen, Chen & Gu, Xifeng, 2021. "Method of power network critical nodes identification and robustness enhancement based on a cooperative framework," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    14. Francesca Petrarca & Silvia Terzi, 2018. "The Global Competitiveness Index: an alternative measure with endogenously derived weights," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(5), pages 2197-2219, September.
    15. Song, Feng & Zheng, Xinye, 2012. "What drives the change in China's energy intensity: Combining decomposition analysis and econometric analysis at the provincial level," Energy Policy, Elsevier, vol. 51(C), pages 445-453.
    16. Huang, Min & He, Yong & Cen, Haiyan, 2007. "Predictive analysis on electric-power supply and demand in China," Renewable Energy, Elsevier, vol. 32(7), pages 1165-1174.
    17. Bin Wang & Wanghao Guan & Yuxuan Sheng & Jinfang Sheng & Jinying Dai & Junkai Zhang & Qiong Li & Qiangqiang Dong & Long Chen, 2021. "A novel measure for influence nodes across complex networks based on node attraction," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 32(01), pages 1-19, January.
    18. Bae, Joonhyun & Kim, Sangwook, 2014. "Identifying and ranking influential spreaders in complex networks by neighborhood coreness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 549-559.
    19. Brounen, Dirk & Kok, Nils & Quigley, John M., 2012. "Residential energy use and conservation: Economics and demographics," European Economic Review, Elsevier, vol. 56(5), pages 931-945.
    20. Wang, Shuliang & Lv, Wenzhuo & Zhao, Longfeng & Nie, Sen & Stanley, H. Eugene, 2019. "Structural and functional robustness of networked critical infrastructure systems under different failure scenarios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 476-487.
    21. Kizhakkedath, A. & Tai, K., 2021. "Vulnerability analysis of critical infrastructure network," International Journal of Critical Infrastructure Protection, Elsevier, vol. 35(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eugenia Nissi & Massimiliano Giacalone & Carlo Cusatelli, 2019. "The Efficiency of the Italian Judicial System: A Two Stage Data Envelopment Analysis Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(1), pages 395-407, November.
    2. Koronakos, Gregory & Sotiros, Dimitris & Despotis, Dimitris K. & Kritikos, Manolis N., 2022. "Fair efficiency decomposition in network DEA: A compromise programming approach," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    3. Namtirtha, Amrita & Dutta, Animesh & Dutta, Biswanath, 2018. "Identifying influential spreaders in complex networks based on kshell hybrid method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 310-324.
    4. Yu, Senbin & Gao, Liang & Xu, Lida & Gao, Zi-You, 2019. "Identifying influential spreaders based on indirect spreading in neighborhood," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 418-425.
    5. Antonio Peyrache & Maria C. A. Silva, 2022. "Efficiency and Productivity Analysis from a System Perspective: Historical Overview," Springer Books, in: Duangkamon Chotikapanich & Alicia N. Rambaldi & Nicholas Rohde (ed.), Advances in Economic Measurement, chapter 0, pages 173-230, Springer.
    6. Kao, Chiang, 2017. "Efficiency measurement and frontier projection identification for general two-stage systems in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 261(2), pages 679-689.
    7. Svetlana V. Ratner & Artem M. Shaposhnikov & Andrey V. Lychev, 2023. "Network DEA and Its Applications (2017–2022): A Systematic Literature Review," Mathematics, MDPI, vol. 11(9), pages 1-24, May.
    8. Lin, Ruiyue & Liu, Qian, 2021. "Multiplier dynamic data envelopment analysis based on directional distance function: An application to mutual funds," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1043-1057.
    9. Wang, Juan & Li, Chao & Xia, Chengyi, 2018. "Improved centrality indicators to characterize the nodal spreading capability in complex networks," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 388-400.
    10. Wang, Ya & Pan, Jiao-feng & Pei, Rui-min & Yi, Bo-Wen & Yang, Guo-liang, 2020. "Assessing the technological innovation efficiency of China's high-tech industries with a two-stage network DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    11. Dan Li & Yanfeng Li & Yeming Gong & Jiawei Yang, 2021. "Estimation of bank performance from multiple perspectives: an alternative solution to the deposit dilemma," Journal of Productivity Analysis, Springer, vol. 56(2), pages 151-170, December.
    12. Chen, Ya & Li, Yongjun & Liang, Liang & Salo, Ahti & Wu, Huaqing, 2016. "Frontier projection and efficiency decomposition in two-stage processes with slacks-based measures," European Journal of Operational Research, Elsevier, vol. 250(2), pages 543-554.
    13. Huang, Kangzheng & Xie, Yun & Peng, Huihao & Li, Weibo, 2024. "Study on dynamic evolution characteristics of Wuhan metro network based on complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 648(C).
    14. Bao, Zhong-Kui & Ma, Chuang & Xiang, Bing-Bing & Zhang, Hai-Feng, 2017. "Identification of influential nodes in complex networks: Method from spreading probability viewpoint," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 391-397.
    15. Reza Feizabadi & Mehri Bagherian, 2023. "Identifying the Influential Factors in Increasing the Efficiency of Network Systems: A Mixed Binary Linear Programming," SN Operations Research Forum, Springer, vol. 4(4), pages 1-14, December.
    16. Wang, Junyi & Hou, Xiaoni & Li, Kezan & Ding, Yong, 2017. "A novel weight neighborhood centrality algorithm for identifying influential spreaders in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 88-105.
    17. An, Qingxian & Chen, Haoxun & Xiong, Beibei & Wu, Jie & Liang, Liang, 2017. "Target intermediate products setting in a two-stage system with fairness concern," Omega, Elsevier, vol. 73(C), pages 49-59.
    18. Victor John M. Cantor & Kim Leng Poh, 2020. "Efficiency measurement for general network systems: a slacks-based measure model," Journal of Productivity Analysis, Springer, vol. 54(1), pages 43-57, August.
    19. Li, Chao & Wang, Li & Sun, Shiwen & Xia, Chengyi, 2018. "Identification of influential spreaders based on classified neighbors in real-world complex networks," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 512-523.
    20. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijocip:v:42:y:2023:i:c:s1874548223000276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-critical-infrastructure-protection .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.