IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v72y2011i2p510-525.html
   My bibliography  Save this article

An algorithm for proper rationalizability

Author

Listed:
  • Perea, Andrés

Abstract

Proper rationalizability ([Schuhmacher, 1999] and [Asheim, 2001]) is a concept in epistemic game theory based on the following two conditions: (a) a player should be cautious, that is, should not exclude any opponent's strategy from consideration; and (b) a player should respect the opponents' preferences, that is, should deem an opponent's strategy si infinitely more likely than if he believes the opponent to prefer si to . A strategy is properly rationalizable if it can optimally be chosen under common belief in the events (a) and (b). In this paper we present an algorithm that for every finite game computes the set of all properly rationalizable strategies. The algorithm is based on the new idea of a preference restriction, which is a pair (si,Ai) consisting of a strategy si, and a subset of strategies Ai, for player i. The interpretation is that player i prefers some strategy in Ai to si. The algorithm proceeds by successively adding preference restrictions to the game.

Suggested Citation

  • Perea, Andrés, 2011. "An algorithm for proper rationalizability," Games and Economic Behavior, Elsevier, vol. 72(2), pages 510-525, June.
  • Handle: RePEc:eee:gamebe:v:72:y:2011:i:2:p:510-525
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899825610001715
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frank Schuhmacher, 1999. "Proper rationalizability and backward induction," International Journal of Game Theory, Springer;Game Theory Society, vol. 28(4), pages 599-615.
    2. Pearce, David G, 1984. "Rationalizable Strategic Behavior and the Problem of Perfection," Econometrica, Econometric Society, vol. 52(4), pages 1029-1050, July.
    3. Blume, Lawrence & Brandenburger, Adam & Dekel, Eddie, 1991. "Lexicographic Probabilities and Equilibrium Refinements," Econometrica, Econometric Society, vol. 59(1), pages 81-98, January.
    4. Tan, Tommy Chin-Chiu & da Costa Werlang, Sergio Ribeiro, 1988. "The Bayesian foundations of solution concepts of games," Journal of Economic Theory, Elsevier, vol. 45(2), pages 370-391, August.
    5. Dekel, Eddie & Fudenberg, Drew, 1990. "Rational behavior with payoff uncertainty," Journal of Economic Theory, Elsevier, vol. 52(2), pages 243-267, December.
    6. Lawrence Blume & Adam Brandenburger & Eddie Dekel, 2014. "Lexicographic Probabilities and Choice Under Uncertainty," World Scientific Book Chapters, in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 6, pages 137-160, World Scientific Publishing Co. Pte. Ltd..
    7. Battigalli, Pierpaolo, 1997. "On Rationalizability in Extensive Games," Journal of Economic Theory, Elsevier, vol. 74(1), pages 40-61, May.
    8. Stahl, Dale O., 1995. "Lexicographic rationalizability and iterated admissibility," Economics Letters, Elsevier, vol. 47(2), pages 155-159, February.
    9. Adam Brandenburger & Amanda Friedenberg & H. Jerome Keisler, 2014. "Admissibility in Games," World Scientific Book Chapters, in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 7, pages 161-212, World Scientific Publishing Co. Pte. Ltd..
    10. Geir B. Asheim, 2002. "Proper rationalizability in lexicographic beliefs," International Journal of Game Theory, Springer;Game Theory Society, vol. 30(4), pages 453-478.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Geir B. Asheim & Andrés Perea, 2019. "Algorithms for cautious reasoning in games," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(4), pages 1241-1275, December.
    2. Christian Bach & Andrés Perea, 2014. "Utility proportional beliefs," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(4), pages 881-902, November.
    3. Dekel, Eddie & Siniscalchi, Marciano, 2015. "Epistemic Game Theory," Handbook of Game Theory with Economic Applications,, Elsevier.
    4. Tsakas, Elias, 2014. "Epistemic equivalence of extended belief hierarchies," Games and Economic Behavior, Elsevier, vol. 86(C), pages 126-144.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dekel, Eddie & Siniscalchi, Marciano, 2015. "Epistemic Game Theory," Handbook of Game Theory with Economic Applications,, Elsevier.
    2. Asheim, Geir B. & Dufwenberg, Martin, 2003. "Admissibility and common belief," Games and Economic Behavior, Elsevier, vol. 42(2), pages 208-234, February.
    3. Asheim, Geir B., 2002. "On the epistemic foundation for backward induction," Mathematical Social Sciences, Elsevier, vol. 44(2), pages 121-144, November.
    4. Geir B. Asheim & Andrés Perea, 2019. "Algorithms for cautious reasoning in games," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(4), pages 1241-1275, December.
    5. Ziegler, Gabriel & Zuazo-Garin, Peio, 2020. "Strategic cautiousness as an expression of robustness to ambiguity," Games and Economic Behavior, Elsevier, vol. 119(C), pages 197-215.
    6. Perea Andrés, 2003. "Rationalizability and Minimal Complexity in Dynamic Games," Research Memorandum 047, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    7. Asheim, Geir B. & Brunnschweiler, Thomas, 2023. "Epistemic foundation of the backward induction paradox," Games and Economic Behavior, Elsevier, vol. 141(C), pages 503-514.
    8. Heifetz, Aviad & Meier, Martin & Schipper, Burkhard C., 2019. "Comprehensive rationalizability," Games and Economic Behavior, Elsevier, vol. 116(C), pages 185-202.
    9. Barelli, Paulo & Galanis, Spyros, 2013. "Admissibility and event-rationality," Games and Economic Behavior, Elsevier, vol. 77(1), pages 21-40.
    10. Perea ý Monsuwé, A., 2003. "Proper rationalizability and belief revision in dynamic games," Research Memorandum 048, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    11. Perea, Andres, 2007. "Proper belief revision and equilibrium in dynamic games," Journal of Economic Theory, Elsevier, vol. 136(1), pages 572-586, September.
    12. Burkhard Schipper & Martin Meier & Aviad Heifetz, 2017. "Comprehensive Rationalizability," Working Papers 174, University of California, Davis, Department of Economics.
    13. Adam Brandenburger & Amanda Friedenberg, 2014. "Self-Admissible Sets," World Scientific Book Chapters, in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 8, pages 213-249, World Scientific Publishing Co. Pte. Ltd..
    14. V. K. Oikonomou & J. Jost, 2020. "Periodic Strategies II: Generalizations and Extensions," Papers 2005.12832, arXiv.org.
    15. Xiao Luo & Ben Wang, 2022. "An epistemic characterization of MACA," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 73(4), pages 995-1024, June.
    16. Søvik, Ylva, 2009. "Strength of dominance and depths of reasoning--An experimental study," Journal of Economic Behavior & Organization, Elsevier, vol. 70(1-2), pages 196-205, May.
    17. Asheim, Geir B. & Perea, Andres, 2005. "Sequential and quasi-perfect rationalizability in extensive games," Games and Economic Behavior, Elsevier, vol. 53(1), pages 15-42, October.
    18. Asheim,G.B. & Perea,A., 2000. "Lexicographic probabilities and rationalizability in extensive games," Memorandum 38/2000, Oslo University, Department of Economics.
    19. Oikonomou, V.K. & Jost, J, 2013. "Periodic strategies and rationalizability in perfect information 2-Player strategic form games," MPRA Paper 48117, University Library of Munich, Germany.
    20. Catonini, Emiliano & De Vito, Nicodemo, 2024. "Cautious belief and iterated admissibility," Journal of Mathematical Economics, Elsevier, vol. 110(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:72:y:2011:i:2:p:510-525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.