IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v70y2010i2p502-508.html
   My bibliography  Save this article

Marginal monotonicity solution of NTU games

Author

Listed:
  • Hwang, Yan-An

Abstract

In the presence of independence of undominating alternatives and continuity, we show that the symmetric egalitarian solution is the unique symmetric solution satisfying marginal monotonicity.

Suggested Citation

  • Hwang, Yan-An, 2010. "Marginal monotonicity solution of NTU games," Games and Economic Behavior, Elsevier, vol. 70(2), pages 502-508, November.
  • Handle: RePEc:eee:gamebe:v:70:y:2010:i:2:p:502-508
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899-8256(10)00062-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kalai, Ehud, 1977. "Proportional Solutions to Bargaining Situations: Interpersonal Utility Comparisons," Econometrica, Econometric Society, vol. 45(7), pages 1623-1630, October.
    2. Samet, Dov, 1985. "An axiomatization of the egalitarian solutions," Mathematical Social Sciences, Elsevier, vol. 9(2), pages 173-181, April.
    3. Nash, John, 1950. "The Bargaining Problem," Econometrica, Econometric Society, vol. 18(2), pages 155-162, April.
    4. Hart, Sergiu & Mas-Colell, Andreu, 1989. "Potential, Value, and Consistency," Econometrica, Econometric Society, vol. 57(3), pages 589-614, May.
    5. Hart, Sergiu, 1985. "An Axiomatization of Harsanyi's Nontransferable Utility Solution," Econometrica, Econometric Society, vol. 53(6), pages 1295-1313, November.
    6. Aumann, Robert J, 1985. "An Axiomatization of the Non-transferable Utility Value," Econometrica, Econometric Society, vol. 53(3), pages 599-612, May.
    7. Kalai, Ehud & Samet, Dov, 1985. "Monotonic Solutions to General Cooperative Games," Econometrica, Econometric Society, vol. 53(2), pages 307-327, March.
    8. Geoffroy de Clippel & Hans Peters & Horst Zank, 2004. "Axiomatizing the Harsanyi solution, the symmetric egalitarian solution and the consistent solution for NTU-games," International Journal of Game Theory, Springer;Game Theory Society, vol. 33(1), pages 145-158, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiwei Cui & Yan-An Hwang & Ding-Cheng You, 2021. "Axiomatizations of the $$\beta $$ β and the score measures in networks," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(2), pages 399-418, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dietzenbacher, Bas & Yanovskaya, Elena, 2023. "The equal split-off set for NTU-games," Mathematical Social Sciences, Elsevier, vol. 121(C), pages 61-67.
    2. Chun, Youngsub, 2004. "On weighted Kalai-Samet solutions for non-transferable utility coalitional form games," Games and Economic Behavior, Elsevier, vol. 47(2), pages 257-267, May.
    3. Rebelo, S., 1997. "On the Determinant of Economic Growth," RCER Working Papers 443, University of Rochester - Center for Economic Research (RCER).
    4. Bergantinos, G. & Casas-Mendez, B. & Fiestras-Janeiro, M.G. & Vidal-Puga, J.J., 2007. "A solution for bargaining problems with coalition structure," Mathematical Social Sciences, Elsevier, vol. 54(1), pages 35-58, July.
    5. Gustavo Bergantiños & Balbina Casas- Méndez & Gloria Fiestras- Janeiro & Juan Vidal-Puga, 2005. "A Focal-Point Solution for Bargaining Problems with Coalition Structure," Game Theory and Information 0511006, University Library of Munich, Germany.
    6. M. Hinojosa & E. Romero-Palacios & J. Zarzuelo, 2015. "Consistency of the Shapley NTU value in G-hyperplane games," Review of Economic Design, Springer;Society for Economic Design, vol. 19(4), pages 259-278, December.
    7. Hinojosa, M.A. & Romero, E. & Zarzuelo, J.M., 2012. "Consistency of the Harsanyi NTU configuration value," Games and Economic Behavior, Elsevier, vol. 76(2), pages 665-677.
    8. Laruelle, Annick & Valenciano, Federico, 2007. "Bargaining in committees as an extension of Nash's bargaining theory," Journal of Economic Theory, Elsevier, vol. 132(1), pages 291-305, January.
    9. Barry O'Neill, 2014. "Networks of Rights in Conflict: A Talmudic Example," Discussion Paper Series dp677, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    10. Shiran Rachmilevitch, 2022. "Pre-bargaining Investment Implies a Pareto Ranking of Bargaining Solutions," Group Decision and Negotiation, Springer, vol. 31(4), pages 769-787, August.
    11. Vincent Martinet & Pedro Gajardo & Michel De Lara & Héctor Ramírez Cabrera, 2011. "Bargaining with intertemporal maximin payoffs," EconomiX Working Papers 2011-7, University of Paris Nanterre, EconomiX.
    12. Ok, Efe A. & Zhou, Lin, 2000. "The Choquet Bargaining Solutions," Games and Economic Behavior, Elsevier, vol. 33(2), pages 249-264, November.
    13. Dominik Karos, 2015. "Stable partitions for games with non-transferable utilities and externalities," Economics Series Working Papers 741, University of Oxford, Department of Economics.
    14. Pedro Calleja & Francesc Llerena, 2017. "Rationality, aggregate monotonicity and consistency in cooperative games: some (im)possibility results," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 48(1), pages 197-220, January.
    15. Yan-An Hwang, 2013. "On the core: complement-reduced game and max-reduced game," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(2), pages 339-355, May.
    16. Barry Feldman, 2002. "A Dual Model of Cooperative Value," Game Theory and Information 0207001, University Library of Munich, Germany.
    17. Eric van Damme, 1984. "The Nash Bargaining Solution is Optimal," Discussion Papers 597, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    18. Emililo Calvo, 2004. "Single NTU-value solutions," Game Theory and Information 0405004, University Library of Munich, Germany, revised 10 Jun 2004.
    19. Kamijo, Yoshio & Kongo, Takumi, 2012. "Whose deletion does not affect your payoff? The difference between the Shapley value, the egalitarian value, the solidarity value, and the Banzhaf value," European Journal of Operational Research, Elsevier, vol. 216(3), pages 638-646.
    20. Perez-Castrillo, David & Wettstein, David, 2006. "An ordinal Shapley value for economic environments," Journal of Economic Theory, Elsevier, vol. 127(1), pages 296-308, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:70:y:2010:i:2:p:502-508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.