IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v28y1999i1p146-154.html
   My bibliography  Save this article

Axiomatizations of Pareto Equilibria in Multicriteria Games

Author

Listed:
  • Voorneveld, Mark
  • Vermeulen, Dries
  • Borm, Peter

Abstract

We focus on axiomatizations of the Pareto equilibrium concept in multicriteria games based on consistency.Axiomatizations of the Nash equilibrium concept by Peleg and Tijs (1996) and Peleg, Potters, and Tijs (1996) have immediate generalizations.The axiomatization of Norde et al.(1996) cannot be generalized without the use of an additional axiom.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Voorneveld, Mark & Vermeulen, Dries & Borm, Peter, 1999. "Axiomatizations of Pareto Equilibria in Multicriteria Games," Games and Economic Behavior, Elsevier, vol. 28(1), pages 146-154, July.
  • Handle: RePEc:eee:gamebe:v:28:y:1999:i:1:p:146-154
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899-8256(98)90680-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Patrone, F. & Pieri, G. & Tijs, S.H. & Torre, A., 1996. "On Consistent Solutions for Strategic Games," Other publications TiSEM 07b489e5-dff2-45d0-bd65-1, Tilburg University, School of Economics and Management.
    2. Peleg, Bezalel & Tijs, Stef, 1996. "The Consistency Principle for Games in Strategic Forms," International Journal of Game Theory, Springer;Game Theory Society, vol. 25(1), pages 13-34.
    3. Norde, Henk & Potters, Jos & Reijnierse, Hans & Vermeulen, Dries, 1996. "Equilibrium Selection and Consistency," Games and Economic Behavior, Elsevier, vol. 12(2), pages 219-225, February.
    4. Peleg, Bezalel & Potters, Jos A M & Tijs, Stef H, 1996. "Minimality of Consistent Solutions for Strategic Games, in Particular for Potential Games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 7(1), pages 81-93, January.
    5. L. S. Shapley & Fred D. Rigby, 1959. "Equilibrium points in games with vector payoffs," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 6(1), pages 57-61, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Georgios Gerasimou, 2019. "Dominance-solvable multicriteria games with incomplete preferences," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 7(2), pages 165-171, December.
    2. Mosquera, M.A. & Borm, P. & Fiestras-Janeiro, M.G. & García-Jurado, I. & Voorneveld, M., 2008. "Characterizing cautious choice," Mathematical Social Sciences, Elsevier, vol. 55(2), pages 143-155, March.
    3. Karima Fahem & Mohammed Radjef, 2015. "Properly efficient Nash equilibrium in multicriteria noncooperative games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(2), pages 175-193, October.
    4. I. Nishizaki & T. Notsu, 2007. "Nondominated Equilibrium Solutions of a Multiobjective Two-Person Nonzero-Sum Game and Corresponding Mathematical Programming Problem," Journal of Optimization Theory and Applications, Springer, vol. 135(2), pages 217-239, November.
    5. Yasuo Sasaki, 2019. "Rationalizability in multicriteria games," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(2), pages 673-685, June.
    6. Natalia Novikova & Irina Pospelova, 2022. "Germeier’s Scalarization for Approximating Solution of Multicriteria Matrix Games," Mathematics, MDPI, vol. 11(1), pages 1-28, December.
    7. Anna N. Rettieva, 2022. "Dynamic multicriteria games with asymmetric players," Journal of Global Optimization, Springer, vol. 83(3), pages 521-537, July.
    8. Kuzyutin, Denis & Smirnova, Nadezhda & Gromova, Ekaterina, 2019. "Long-term implementation of the cooperative solution in a multistage multicriteria game," Operations Research Perspectives, Elsevier, vol. 6(C).
    9. Amparo M. Mármol & Luisa Monroy & M. Ángeles Caraballo & Asunción Zapata, 2017. "Equilibria with vector-valued utilities and preference information. The analysis of a mixed duopoly," Theory and Decision, Springer, vol. 83(3), pages 365-383, October.
    10. Ge, Ge & Godager, Geir, 2021. "Predicting strategic medical choices: An application of a quantal response equilibrium choice model," Journal of choice modelling, Elsevier, vol. 39(C).
    11. Kuzyutin, Denis & Smirnova, Nadezhda, 2023. "A dynamic multicriteria game of renewable resource extraction with environmentally concerned players," Economics Letters, Elsevier, vol. 226(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peleg, Bezalel & Sudholter, Peter, 1997. "An Axiomatization of Nash Equilibria in Economic Situations," Games and Economic Behavior, Elsevier, vol. 18(2), pages 277-285, February.
    2. Voorneveld, Mark, 2004. "Preparation," Games and Economic Behavior, Elsevier, vol. 48(2), pages 403-414, August.
    3. Gonzalez, Stéphane & Lardon, Aymeric, 2021. "Axiomatic foundations of the core for games in effectiveness form," Mathematical Social Sciences, Elsevier, vol. 114(C), pages 28-38.
    4. Stéphane Gonzalez & Aymeric Lardon, 2018. "Axiomatic Foundations of a Unifying Concept of the Core of Games in Effectiveness Form," GREDEG Working Papers 2018-15, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    5. Voorneveld, Mark, 2019. "An axiomatization of the Nash equilibrium concept," Games and Economic Behavior, Elsevier, vol. 117(C), pages 316-321.
    6. Stéphane Gonzalez & Aymeric Lardon, 2018. "Axiomatic Foundations of a Unifying Core," Working Papers 1817, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    7. Mark Voorneveld & Willemien Kets & Henk Norde, 2006. "An Axiomatization of Minimal Curb Sets," International Journal of Game Theory, Springer;Game Theory Society, vol. 34(1), pages 153-153, April.
    8. Voorneveld, Mark, 2019. "An elementary axiomatization of the Nash equilibrium concept," SSE Working Paper Series in Economics 2019:1, Stockholm School of Economics.
    9. Kets, W., 2008. "Networks and learning in game theory," Other publications TiSEM 7713fce1-3131-498c-8c6f-3, Tilburg University, School of Economics and Management.
    10. Martin Meier & Burkhard Schipper, 2014. "Bayesian games with unawareness and unawareness perfection," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 56(2), pages 219-249, June.
    11. P. Jean-Jacques Herings & Andrey Meshalkin & Arkadi Predtetchinski, 2020. "Optimality, Equilibrium, and Curb Sets in Decision Problems Without Commitment," Dynamic Games and Applications, Springer, vol. 10(2), pages 478-492, June.
    12. Dufwenberg, M. & Norde, H.W. & Reijnierse, J.H. & Tijs, S.H., 1997. "The consistency principle for set-valued solutions and a new direction for the theory of equilibrium refinements," Discussion Paper 1997-34, Tilburg University, Center for Economic Research.
    13. repec:hal:journl:hal-04797842 is not listed on IDEAS
    14. Rebelo, S., 1997. "On the Determinant of Economic Growth," RCER Working Papers 443, University of Rochester - Center for Economic Research (RCER).
    15. Koji Takamiya, 2006. "Consistency and Unanimity in the House Allocation Problems I: Collective Initial Endowments," ISER Discussion Paper 0657, Institute of Social and Economic Research, Osaka University.
    16. Shinotsuka, Tomoichi & Takamiya, Koji, 2003. "The weak core of simple games with ordinal preferences: implementation in Nash equilibrium," Games and Economic Behavior, Elsevier, vol. 44(2), pages 379-389, August.
    17. Christian Ewerhart, 2020. "Ordinal potentials in smooth games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 70(4), pages 1069-1100, November.
    18. Giovanni Facchini & Freek van Megen & Peter Borm & Stef Tijs, 1997. "Congestion Models And Weighted Bayesian Potential Games," Theory and Decision, Springer, vol. 42(2), pages 193-206, March.
    19. Voorneveld, Mark, 1997. "Equilibria and approximate equilibria in infinite potential games," Economics Letters, Elsevier, vol. 56(2), pages 163-169, October.
    20. Voorneveld, M. & van den Nouweland, C.G.A.M., 1998. "Cooperative Multicriteria Games with Public and Private Criteria : An Investigation of Core Concepts," Discussion Paper 1998-62, Tilburg University, Center for Economic Research.
    21. Mark Voorneveld & Peter Borm & Freek Van Megen & Stef Tijs & Giovanni Facchini, 1999. "Congestion Games And Potentials Reconsidered," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 1(03n04), pages 283-299.

    More about this item

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:28:y:1999:i:1:p:146-154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.