IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v56y1997i2p163-169.html
   My bibliography  Save this article

Equilibria and approximate equilibria in infinite potential games

Author

Listed:
  • Voorneveld, Mark

Abstract

Finite potential games have Nash equilibria in pure strategies.This note provides some results on the existence of equilibria or approximate equilibria if some players have infinite sets of strategies.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Voorneveld, Mark, 1997. "Equilibria and approximate equilibria in infinite potential games," Economics Letters, Elsevier, vol. 56(2), pages 163-169, October.
  • Handle: RePEc:eee:ecolet:v:56:y:1997:i:2:p:163-169
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1765(97)81895-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Giovanni Facchini & Freek van Megen & Peter Borm & Stef Tijs, 1997. "Congestion Models And Weighted Bayesian Potential Games," Theory and Decision, Springer, vol. 42(2), pages 193-206, March.
    2. Patrone, F. & Pieri, G. & Tijs, S.H. & Torre, A., 1996. "On Consistent Solutions for Strategic Games," Other publications TiSEM 07b489e5-dff2-45d0-bd65-1, Tilburg University, School of Economics and Management.
    3. Slade, Margaret E, 1994. "What Does an Oligopoly Maximize?," Journal of Industrial Economics, Wiley Blackwell, vol. 42(1), pages 45-61, March.
    4. Henk Norde & Stef Tijs, 1998. "Determinateness of strategic games with a potential," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 48(3), pages 377-385, December.
    5. Peleg, Bezalel & Potters, Jos A M & Tijs, Stef H, 1996. "Minimality of Consistent Solutions for Strategic Games, in Particular for Potential Games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 7(1), pages 81-93, January.
    6. Norde, H.W. & Tijs, S.H., 1996. "Determinateness of Strategic Games with a Potential," Other publications TiSEM 5713f5f9-f10f-4612-aa31-7, Tilburg University, School of Economics and Management.
    7. Monderer, Dov & Shapley, Lloyd S., 1996. "Potential Games," Games and Economic Behavior, Elsevier, vol. 14(1), pages 124-143, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David P. Myatt & Chris Wallace, 2008. "On the Sources and Value of Information: Public Announcements and Macroeconomic Performance," Economics Series Working Papers 411, University of Oxford, Department of Economics.
    2. Kukushkin, Nikolai S., 2010. "On continuous ordinal potential games," MPRA Paper 20713, University Library of Munich, Germany.
    3. Jacques Durieu & Hans Haller & Nicolas Querou & Philippe Solal, 2008. "Ordinal Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 177-194.
    4. Mallozzi, L. & Pusillo, L. & Tijs, S.H., 2006. "Approximate Equilibria for Bayesian Multi-Criteria Games," Other publications TiSEM 9ca36884-cabc-418b-a5a5-a, Tilburg University, School of Economics and Management.
    5. Christian Ewerhart, 2020. "Ordinal potentials in smooth games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 70(4), pages 1069-1100, November.
    6. Tercieux, O.R.C. & Voorneveld, M., 2005. "The Cutting Power of Preparation," Other publications TiSEM 75173341-627f-4eb2-91f1-0, Tilburg University, School of Economics and Management.
    7. Hannu Salonen, 2013. "Utilitarian Preferences and Potential Games," Discussion Papers 85, Aboa Centre for Economics.
    8. Olivier Tercieux & Mark Voorneveld, 2010. "The cutting power of preparation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(1), pages 85-101, February.
    9. Nikolai Kukushkin, 2011. "Nash equilibrium in compact-continuous games with a potential," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(2), pages 387-392, May.
    10. Mallozzi, L. & Pusillo, L. & Tijs, S.H., 2006. "Approximate Equilibria for Bayesian Multi-Criteria Games," Discussion Paper 2006-121, Tilburg University, Center for Economic Research.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Voorneveld, M., 1996. "Equilibria and Approximate Equilibria in Infinite Potential Games," Other publications TiSEM ba912d2a-7e99-45f6-b8ae-f, Tilburg University, School of Economics and Management.
    2. Mark Voorneveld & Peter Borm & Freek Van Megen & Stef Tijs & Giovanni Facchini, 1999. "Congestion Games And Potentials Reconsidered," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 1(03n04), pages 283-299.
    3. Christian Ewerhart, 2020. "Ordinal potentials in smooth games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 70(4), pages 1069-1100, November.
    4. L. Mallozi & S. Tijs & M. Voorneveld, 2000. "Infinite Hierarchical Potential Games," Journal of Optimization Theory and Applications, Springer, vol. 107(2), pages 287-296, November.
    5. Voorneveld, Mark, 2019. "An axiomatization of the Nash equilibrium concept," Games and Economic Behavior, Elsevier, vol. 117(C), pages 316-321.
    6. Branzei, Rodica & Mallozzi, Lina & Tijs, Stef, 2003. "Supermodular games and potential games," Journal of Mathematical Economics, Elsevier, vol. 39(1-2), pages 39-49, February.
    7. Philippe Jehiel & Moritz Meyer-ter-Vehn & Benny Moldovanu, 2008. "Ex-post implementation and preference aggregation via potentials," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 37(3), pages 469-490, December.
    8. Kets, W., 2008. "Networks and learning in game theory," Other publications TiSEM 7713fce1-3131-498c-8c6f-3, Tilburg University, School of Economics and Management.
    9. Fioravante Patrone & Lucia Pusillo & Stef Tijs, 2007. "Multicriteria games and potentials," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 138-145, July.
    10. M. Koster & H. Reijnierse & M. Voorneveld, 2003. "Voluntary Contributions to Multiple Public Projects," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 5(1), pages 25-50, January.
    11. Martin Meier & Burkhard Schipper, 2014. "Bayesian games with unawareness and unawareness perfection," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 56(2), pages 219-249, June.
    12. Giovanni Facchini & Freek van Megen & Peter Borm & Stef Tijs, 1997. "Congestion Models And Weighted Bayesian Potential Games," Theory and Decision, Springer, vol. 42(2), pages 193-206, March.
    13. Oyama, Daisuke & Tercieux, Olivier, 2009. "Iterated potential and robustness of equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1726-1769, July.
    14. P. Jean-Jacques Herings & Andrey Meshalkin & Arkadi Predtetchinski, 2020. "Optimality, Equilibrium, and Curb Sets in Decision Problems Without Commitment," Dynamic Games and Applications, Springer, vol. 10(2), pages 478-492, June.
    15. Nora, Vladyslav & Uno, Hiroshi, 2014. "Saddle functions and robust sets of equilibria," Journal of Economic Theory, Elsevier, vol. 150(C), pages 866-877.
    16. Milchtaich, Igal, 2009. "Weighted congestion games with separable preferences," Games and Economic Behavior, Elsevier, vol. 67(2), pages 750-757, November.
    17. Peleg, Bezalel & Sudholter, Peter, 1997. "An Axiomatization of Nash Equilibria in Economic Situations," Games and Economic Behavior, Elsevier, vol. 18(2), pages 277-285, February.
    18. Olivier Tercieux & Mark Voorneveld, 2010. "The cutting power of preparation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(1), pages 85-101, February.
    19. Dufwenberg, M. & Norde, H.W. & Reijnierse, J.H. & Tijs, S.H., 1997. "The consistency principle for set-valued solutions and a new direction for the theory of equilibrium refinements," Discussion Paper 1997-34, Tilburg University, Center for Economic Research.
    20. Jacques Durieu & Hans Haller & Nicolas Querou & Philippe Solal, 2008. "Ordinal Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 177-194.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:56:y:1997:i:2:p:163-169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.