IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v144y2024icp225-249.html
   My bibliography  Save this article

Learning in networks with idiosyncratic agents

Author

Listed:
  • Khandelwal, Vatsal

Abstract

Individuals update their beliefs and respond to new information in idiosyncratic ways. I show that an individual's idiosyncrasies such as under-reaction, over-reaction, or frustration can have spillover effects and adversely affect the long run beliefs of society. I derive sufficient conditions for convergence of beliefs for all possible networks of agents with heterogeneous idiosyncrasies. Beliefs converge if the magnitude of over-reaction and frustration in any agent's network neighbourhood is below a threshold determined by how much they trust their own private signals. I find that the absence of disproportionately influential agents is not sufficient to ensure the accuracy of long-run beliefs if learning idiosyncrasies also grow with the network. Finally, I show that agent under-reaction can partition the network, create bottlenecks, and delay convergence. Simulations on artificial and Indian village networks validate the results.

Suggested Citation

  • Khandelwal, Vatsal, 2024. "Learning in networks with idiosyncratic agents," Games and Economic Behavior, Elsevier, vol. 144(C), pages 225-249.
  • Handle: RePEc:eee:gamebe:v:144:y:2024:i:c:p:225-249
    DOI: 10.1016/j.geb.2024.01.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899825624000125
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.geb.2024.01.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joshua Schwartzstein, 2014. "Selective Attention And Learning," Journal of the European Economic Association, European Economic Association, vol. 12(6), pages 1423-1452, December.
    2. Botond Kőszegi & Matthew Rabin, 2006. "A Model of Reference-Dependent Preferences," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(4), pages 1133-1165.
    3. Pedro Bordalo & Nicola Gennaioli & Yueran Ma & Andrei Shleifer, 2020. "Overreaction in Macroeconomic Expectations," American Economic Review, American Economic Association, vol. 110(9), pages 2748-2782, September.
    4. Garance Genicot & Debraj Ray, 2017. "Aspirations and Inequality," Econometrica, Econometric Society, vol. 85, pages 489-519, March.
    5. Acemoglu, Daron & Ozdaglar, Asuman & ParandehGheibi, Ali, 2010. "Spread of (mis)information in social networks," Games and Economic Behavior, Elsevier, vol. 70(2), pages 194-227, November.
    6. De Bondt, Werner F M & Thaler, Richard, 1985. "Does the Stock Market Overreact?," Journal of Finance, American Finance Association, vol. 40(3), pages 793-805, July.
    7. Samuelson, William & Zeckhauser, Richard, 1988. "Status Quo Bias in Decision Making," Journal of Risk and Uncertainty, Springer, vol. 1(1), pages 7-59, March.
    8. Timothy G. Conley & Christopher R. Udry, 2010. "Learning about a New Technology: Pineapple in Ghana," American Economic Review, American Economic Association, vol. 100(1), pages 35-69, March.
    9. H. Peyton Young, 2015. "The Evolution of Social Norms," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 359-387, August.
    10. Francis Bloch & Gabrielle Demange & Rachel Kranton, 2018. "Rumors And Social Networks," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(2), pages 421-448, May.
    11. Munshi, Kaivan & Myaux, Jacques, 2006. "Social norms and the fertility transition," Journal of Development Economics, Elsevier, vol. 80(1), pages 1-38, June.
    12. Rabin, Matthew & Eyster, Erik & Weizsäcker, Georg, 2015. "An Experiment on Social Mislearning," CEPR Discussion Papers 11020, C.E.P.R. Discussion Papers.
    13. Nicholas C. Barberis, 2018. "Psychology-based Models of Asset Prices and Trading Volume," NBER Working Papers 24723, National Bureau of Economic Research, Inc.
    14. Garance Genicot & Debraj Ray, 2020. "Aspirations and Economic Behavior," Annual Review of Economics, Annual Reviews, vol. 12(1), pages 715-746, August.
    15. Peter M. DeMarzo & Dimitri Vayanos & Jeffrey Zwiebel, 2003. "Persuasion Bias, Social Influence, and Unidimensional Opinions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(3), pages 909-968.
    16. Rema Hanna & Sendhil Mullainathan & Joshua Schwartzstein, 2014. "Learning Through Noticing: Theory and Evidence from a Field Experiment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 129(3), pages 1311-1353.
    17. Markus Mobius & Tanya Rosenblat, 2014. "Social Learning in Economics," Annual Review of Economics, Annual Reviews, vol. 6(1), pages 827-847, August.
    18. Daniel Kahneman & Richard H. Thaler, 2006. "Anomalies: Utility Maximization and Experienced Utility," Journal of Economic Perspectives, American Economic Association, vol. 20(1), pages 221-234, Winter.
    19. Jadbabaie, Ali & Molavi, Pooya & Sandroni, Alvaro & Tahbaz-Salehi, Alireza, 2012. "Non-Bayesian social learning," Games and Economic Behavior, Elsevier, vol. 76(1), pages 210-225.
    20. Erik Eyster & Matthew Rabin, 2010. "Naïve Herding in Rich-Information Settings," American Economic Journal: Microeconomics, American Economic Association, vol. 2(4), pages 221-243, November.
    21. Benjamin Golub & Matthew O. Jackson, 2012. "How Homophily Affects the Speed of Learning and Best-Response Dynamics," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 127(3), pages 1287-1338.
    22. Arun G. Chandrasekhar & Horacio Larreguy & Juan Pablo Xandri, 2020. "Testing Models of Social Learning on Networks: Evidence From Two Experiments," Econometrica, Econometric Society, vol. 88(1), pages 1-32, January.
    23. Matthew Rabin, 2002. "Inference by Believers in the Law of Small Numbers," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 117(3), pages 775-816.
    24. Hans-Peter Kohler & Jere Behrman & Susan Watkins, 2001. "The density of social networks and fertility decisions: evidence from south nyanza district, kenya," Demography, Springer;Population Association of America (PAA), vol. 38(1), pages 43-58, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Ing-Haw & Hsiaw, Alice, 2022. "Distrust in experts and the origins of disagreement," Journal of Economic Theory, Elsevier, vol. 200(C).
    2. Mueller-Frank, Manuel, 2024. "As strong as the weakest node: The impact of misinformation in social networks," Journal of Economic Theory, Elsevier, vol. 215(C).
    3. Buechel, Berno & Klößner, Stefan & Meng, Fanyuan & Nassar, Anis, 2023. "Misinformation due to asymmetric information sharing," Journal of Economic Dynamics and Control, Elsevier, vol. 150(C).
    4. Francesco Drago & Friederike Mengel & Christian Traxler, 2020. "Compliance Behavior in Networks: Evidence from a Field Experiment," American Economic Journal: Applied Economics, American Economic Association, vol. 12(2), pages 96-133, April.
    5. Gallo, E. & Langtry, A., 2020. "Social Networks, Confirmation Bias and Shock Elections," Cambridge Working Papers in Economics 2099, Faculty of Economics, University of Cambridge.
    6. Edoardo Gallo & Alastair Langtry, 2020. "Social networks, confirmation bias and shock elections," Papers 2011.00520, arXiv.org.
    7. Stefano DellaVigna, 2009. "Psychology and Economics: Evidence from the Field," Journal of Economic Literature, American Economic Association, vol. 47(2), pages 315-372, June.
    8. Dasaratha, Krishna & He, Kevin, 2020. "Network structure and naive sequential learning," Theoretical Economics, Econometric Society, vol. 15(2), May.
    9. Gagnon-Bartsch, Tristan & Bushong, Benjamin, 2022. "Learning with misattribution of reference dependence," Journal of Economic Theory, Elsevier, vol. 203(C).
    10. Michel Grabisch & Agnieszka Rusinowska, 2020. "A Survey on Nonstrategic Models of Opinion Dynamics," Games, MDPI, vol. 11(4), pages 1-29, December.
    11. Kandpal, Eeshani & Baylis, Kathy, 2019. "The social lives of married women: Peer effects in female autonomy and investments in children," Journal of Development Economics, Elsevier, vol. 140(C), pages 26-43.
    12. Comola, Margherita & Rusinowska, Agnieszka & Villeval, Marie Claire, 2024. "Competing for Influence in Networks through Strategic Targeting," IZA Discussion Papers 17315, Institute of Labor Economics (IZA).
    13. Eger, Steffen, 2016. "Opinion dynamics and wisdom under out-group discrimination," Mathematical Social Sciences, Elsevier, vol. 80(C), pages 97-107.
    14. Aislinn Bohren & Daniel Hauser, 2017. "Bounded Rationality And Learning: A Framwork and A Robustness Result," PIER Working Paper Archive 17-007, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 May 2017.
    15. Rapanos, Theodoros, 2023. "What makes an opinion leader: Expertise vs popularity," Games and Economic Behavior, Elsevier, vol. 138(C), pages 355-372.
    16. Simone Cerreia-Vioglio & Roberto Corrao & Giacomo Lanzani, 2020. "Robust Opinion Aggregation and its Dynamics," Working Papers 662, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    17. Dasaratha, Krishna & He, Kevin, 2021. "An experiment on network density and sequential learning," Games and Economic Behavior, Elsevier, vol. 128(C), pages 182-192.
    18. Li, Wei & Tan, Xu, 2021. "Cognitively-constrained learning from neighbors," Games and Economic Behavior, Elsevier, vol. 129(C), pages 32-54.
    19. Margherita Comola & Agnieszka Rusinowska & Marie Claire Villeval, 2024. "Competing for Influence in Networks Through Strategic Targeting [En compétition pour l'influence dans les réseaux grâce au ciblage stratégique]," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-04706311, HAL.
    20. Buechel, Berno & Hellmann, Tim & Klößner, Stefan, 2015. "Opinion dynamics and wisdom under conformity," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 240-257.

    More about this item

    Keywords

    Social networks; Learning; Beliefs; Behavioural; DeGroot;
    All these keywords.

    JEL classification:

    • D80 - Microeconomics - - Information, Knowledge, and Uncertainty - - - General
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • D85 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Network Formation
    • D90 - Microeconomics - - Micro-Based Behavioral Economics - - - General
    • D91 - Microeconomics - - Micro-Based Behavioral Economics - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making
    • Z13 - Other Special Topics - - Cultural Economics - - - Economic Sociology; Economic Anthropology; Language; Social and Economic Stratification

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:144:y:2024:i:c:p:225-249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.