IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v141y2023icp529-547.html
   My bibliography  Save this article

Unique stable matchings

Author

Listed:
  • Gutin, Gregory Z.
  • Neary, Philip R.
  • Yeo, Anders

Abstract

In this paper we consider the issue of a unique prediction in one-to-one two-sided matching markets, as defined by Gale and Shapley (1962), and we prove the following: TheoremLet P be a one-to-one two-sided matching market and letP⁎be its associated normal form, a (weakly) smaller matching market with the same set of stable matchings that can be obtained using procedures introduced inIrving and Leather (1986)andBalinski and Ratier (1997). The following three statements are equivalent:(a)P has a unique stable matching.(b)Preferences onP⁎are acyclic, as defined byChung (2000).(c)InP⁎every market participant's preference list is a singleton.

Suggested Citation

  • Gutin, Gregory Z. & Neary, Philip R. & Yeo, Anders, 2023. "Unique stable matchings," Games and Economic Behavior, Elsevier, vol. 141(C), pages 529-547.
  • Handle: RePEc:eee:gamebe:v:141:y:2023:i:c:p:529-547
    DOI: 10.1016/j.geb.2023.07.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899825623001033
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.geb.2023.07.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Philip J. Reny, 2021. "A simple sufficient condition for a unique and student-efficient stable matching in the college admissions problem," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 9(1), pages 7-9, April.
    2. Chung, Kim-Sau, 2000. "On the Existence of Stable Roommate Matchings," Games and Economic Behavior, Elsevier, vol. 33(2), pages 206-230, November.
    3. Legros, Patrick & Newman, Andrew, 2010. "Co-ranking mates: Assortative matching in marriage markets," Economics Letters, Elsevier, vol. 106(3), pages 177-179, March.
    4. Holzman, Ron & Samet, Dov, 2014. "Matching of like rank and the size of the core in the marriage problem," Games and Economic Behavior, Elsevier, vol. 88(C), pages 277-285.
    5. Martin Dufwenberg & Mark Stegeman, 2002. "Existence and Uniqueness of Maximal Reductions Under Iterated Strict Dominance," Econometrica, Econometric Society, vol. 70(5), pages 2007-2023, September.
    6. Crawford, Vincent P & Knoer, Elsie Marie, 1981. "Job Matching with Heterogeneous Firms and Workers," Econometrica, Econometric Society, vol. 49(2), pages 437-450, March.
    7. Tan, Tommy Chin-Chiu & da Costa Werlang, Sergio Ribeiro, 1988. "The Bayesian foundations of solution concepts of games," Journal of Economic Theory, Elsevier, vol. 45(2), pages 370-391, August.
    8. Roth, Alvin E., 1989. "Two-sided matching with incomplete information about others' preferences," Games and Economic Behavior, Elsevier, vol. 1(2), pages 191-209, June.
    9. Romero-Medina, Antonio & Triossi, Matteo, 2013. "Acyclicity and singleton cores in matching markets," Economics Letters, Elsevier, vol. 118(1), pages 237-239.
    10. Konishi, Hideo & Unver, M. Utku, 2006. "Credible group stability in many-to-many matching problems," Journal of Economic Theory, Elsevier, vol. 129(1), pages 57-80, July.
    11. , & ,, 2006. "A theory of stability in many-to-many matching markets," Theoretical Economics, Econometric Society, vol. 1(2), pages 233-273, June.
    12. Ehlers, Lars & Masso, Jordi, 2007. "Incomplete information and singleton cores in matching markets," Journal of Economic Theory, Elsevier, vol. 136(1), pages 587-600, September.
    13. Bernheim, B Douglas, 1984. "Rationalizable Strategic Behavior," Econometrica, Econometric Society, vol. 52(4), pages 1007-1028, July.
    14. Alvin Roth, 2008. "Deferred acceptance algorithms: history, theory, practice, and open questions," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(3), pages 537-569, March.
    15. Gabrielle Demange & David Gale & Marilda Sotomayor, 1987. "A Further Note on the Stable Matching Problem," Post-Print halshs-00670980, HAL.
    16. Antonio Romero-Medina & Matteo Triossi, 2021. "Two-sided strategy-proofness in many-to-many matching markets," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(1), pages 105-118, March.
    17. Eeckhout, Jan, 2000. "On the uniqueness of stable marriage matchings," Economics Letters, Elsevier, vol. 69(1), pages 1-8, October.
    18. José Alcalde, 1994. "Exchange-proofness or divorce-proofness? Stability in one-sided matching markets," Review of Economic Design, Springer;Society for Economic Design, vol. 1(1), pages 275-287, December.
    19. Moulin, Herve, 1979. "Dominance Solvable Voting Schemes," Econometrica, Econometric Society, vol. 47(6), pages 1137-1151, November.
    20. Itai Ashlagi & Yash Kanoria & Jacob D. Leshno, 2017. "Unbalanced Random Matching Markets: The Stark Effect of Competition," Journal of Political Economy, University of Chicago Press, vol. 125(1), pages 69-98.
    21. Pearce, David G, 1984. "Rationalizable Strategic Behavior and the Problem of Perfection," Econometrica, Econometric Society, vol. 52(4), pages 1029-1050, July.
    22. Tayfun Sonmez, 1999. "Strategy-Proofness and Essentially Single-Valued Cores," Econometrica, Econometric Society, vol. 67(3), pages 677-690, May.
    23. Haluk I. Ergin, 2002. "Efficient Resource Allocation on the Basis of Priorities," Econometrica, Econometric Society, vol. 70(6), pages 2489-2497, November.
    24. Kesten, Onur, 2006. "On two competing mechanisms for priority-based allocation problems," Journal of Economic Theory, Elsevier, vol. 127(1), pages 155-171, March.
    25. Sotomayor, Marilda, 1999. "Three remarks on the many-to-many stable matching problem," Mathematical Social Sciences, Elsevier, vol. 38(1), pages 55-70, July.
    26. Guth, Werner & Schmittberger, Rolf & Schwarze, Bernd, 1982. "An experimental analysis of ultimatum bargaining," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 367-388, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Estelle Cantillon & Li Chen & Juan Sebastian Pereyra Barreiro, 2022. "Respecting priorities versus respecting preferences in school choice: When is there a trade-off ?," Working Papers ECARES 2022-39, ULB -- Universite Libre de Bruxelles.
    2. Federico Echenique & Joseph Root & Fedor Sandomirskiy, 2024. "Stable matching as transportation," Papers 2402.13378, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gregory Z. Gutin & Philip R. Neary & Anders Yeo, 2021. "Unique Stable Matchings," Papers 2106.12977, arXiv.org, revised Jul 2023.
    2. Jaeok Park, 2017. "Competitive equilibrium and singleton cores in generalized matching problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(2), pages 487-509, May.
    3. Estelle Cantillon & Li Chen & Juan Sebastian Pereyra Barreiro, 2022. "Respecting priorities versus respecting preferences in school choice: When is there a trade-off ?," Working Papers ECARES 2022-39, ULB -- Universite Libre de Bruxelles.
    4. Estelle Cantillon & Li Chen & Juan S. Pereyra, 2022. "Respecting priorities versus respecting preferences in school choice: When is there a trade-off?," Papers 2212.02881, arXiv.org, revised Sep 2024.
    5. Marcelo Ariel Fernandez & Kirill Rudov & Leeat Yariv, 2022. "Centralized Matching with Incomplete Information," American Economic Review: Insights, American Economic Association, vol. 4(1), pages 18-33, March.
    6. Alvin Roth, 2008. "Deferred acceptance algorithms: history, theory, practice, and open questions," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(3), pages 537-569, March.
    7. Romero-Medina, Antonio & Triossi, Matteo, 2013. "Acyclicity and singleton cores in matching markets," Economics Letters, Elsevier, vol. 118(1), pages 237-239.
    8. Takashi Akahoshi, 2014. "A necessary and sufficient condition for stable matching rules to be strategy-proof," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 43(3), pages 683-702, October.
    9. John William Hatfield & Scott Duke Kominers, 2012. "Matching in Networks with Bilateral Contracts," American Economic Journal: Microeconomics, American Economic Association, vol. 4(1), pages 176-208, February.
    10. Akahoshi, Takashi, 2014. "Singleton core in many-to-one matching problems," Mathematical Social Sciences, Elsevier, vol. 72(C), pages 7-13.
    11. Xiao Luo & Xuewen Qian & Chen Qu, 2020. "Iterated elimination procedures," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 70(2), pages 437-465, September.
    12. Kloosterman, Andrew & Troyan, Peter, 2020. "School choice with asymmetric information: priority design and the curse of acceptance," Theoretical Economics, Econometric Society, vol. 15(3), July.
    13. Amanda Friedenberg & H. Jerome Keisler, 2021. "Iterated dominance revisited," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 72(2), pages 377-421, September.
    14. Hatfield, John William & Kominers, Scott Duke, 2017. "Contract design and stability in many-to-many matching," Games and Economic Behavior, Elsevier, vol. 101(C), pages 78-97.
    15. Salonen, Hannu & Salonen, Mikko A.A., 2018. "Mutually best matches," Mathematical Social Sciences, Elsevier, vol. 91(C), pages 42-50.
    16. Papai, Szilvia, 2004. "Unique stability in simple coalition formation games," Games and Economic Behavior, Elsevier, vol. 48(2), pages 337-354, August.
    17. Karpov, Alexander, 2019. "A necessary and sufficient condition for uniqueness consistency in the stable marriage matching problem," Economics Letters, Elsevier, vol. 178(C), pages 63-65.
    18. Roger Guesnerie, 2009. "Macroeconomic and Monetary Policies from the Eductive Viewpoint," Central Banking, Analysis, and Economic Policies Book Series, in: Klaus Schmidt-Hebbel & Carl E. Walsh & Norman Loayza (Series Editor) & Klaus Schmidt-Hebbel (Series (ed.),Monetary Policy under Uncertainty and Learning, edition 1, volume 13, chapter 6, pages 171-202, Central Bank of Chile.
    19. Robin Cubitt & Robert Sugden, 2005. "Common reasoning in games: a resolution of the paradoxes of ‘common knowledge of rationality’," Discussion Papers 2005-17, The Centre for Decision Research and Experimental Economics, School of Economics, University of Nottingham.
    20. Parag A. Pathak & Alvin E. Roth, 2013. "Matching with Couples: Stability and Incentives in Large Markets," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 128(4), pages 1585-1632.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:141:y:2023:i:c:p:529-547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.