IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v133y2022icp77-84.html
   My bibliography  Save this article

Strategic transfers between cooperative games

Author

Listed:
  • Berden, Caroline
  • Peters, Hans
  • Robles, Laura
  • Vermeulen, Dries

Abstract

We consider a model where the same group of players is involved in more than one cooperative (transferable utility) game. A rule determines the payoffs per game, and for each player a utility function evaluates the resulting vector of payoffs. We assume that each player, independently, can make transfers of worth between different games, thereby affecting its payoff vector and, thus, utility. Two transfer systems are considered, resulting in two distinct noncooperative games, and the focus of the paper is on establishing existence and a characterization of Nash equilibria in these games.

Suggested Citation

  • Berden, Caroline & Peters, Hans & Robles, Laura & Vermeulen, Dries, 2022. "Strategic transfers between cooperative games," Games and Economic Behavior, Elsevier, vol. 133(C), pages 77-84.
  • Handle: RePEc:eee:gamebe:v:133:y:2022:i:c:p:77-84
    DOI: 10.1016/j.geb.2022.02.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899825622000367
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.geb.2022.02.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Laurence Kranich & Andrés Perea & Hans Peters, 2005. "Core Concepts For Dynamic Tu Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 7(01), pages 43-61.
    2. Helga Habis & P. Jean-Jacques Herings, 2010. "A Note On The Weak Sequential Core Of Dynamic Tu Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 12(04), pages 407-416.
    3. Tijs, S., 1981. "Bounds for the core of a game and the t-value," Other publications TiSEM ebc650eb-f25e-4802-ba0b-2, Tilburg University, School of Economics and Management.
    4. Rosenthal, Edward C., 1990. "Monotonicity of solutions in certain dynamic cooperative games," Economics Letters, Elsevier, vol. 34(3), pages 221-226, November.
    5. Rosenthal, E C, 1990. "Monotonicity of the Core and Value in Dynamic Cooperative Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 19(1), pages 45-57.
    6. Berden, C., 2007. "The role of individual intertemporal transfers in dynamic TU-Games," Research Memorandum 030, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    7. Csóka, Péter & Jean-Jacques Herings, P. & Kóczy, László Á. & Pintér, Miklós, 2011. "Convex and exact games with non-transferable utility," European Journal of Operational Research, Elsevier, vol. 209(1), pages 57-62, February.
    8. SCHMEIDLER, David, 1969. "The nucleolus of a characteristic function game," LIDAM Reprints CORE 44, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Predtetchinski, Arkadi, 2007. "The strong sequential core for stationary cooperative games," Games and Economic Behavior, Elsevier, vol. 61(1), pages 50-66, October.
    10. Jerzy A. Filar & Leon A. Petrosjan, 2000. "Dynamic Cooperative Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 47-65.
    11. Ehud Lehrer & Marco Scarsini, 2013. "On the Core of Dynamic Cooperative Games," Dynamic Games and Applications, Springer, vol. 3(3), pages 359-373, September.
    12. Habis, Helga & Herings, P. Jean-Jacques, 2011. "Transferable utility games with uncertainty," Journal of Economic Theory, Elsevier, vol. 146(5), pages 2126-2139, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Besner, Manfred, 2022. "The grand surplus value and repeated cooperative cross-games with coalitional collaboration," Journal of Mathematical Economics, Elsevier, vol. 102(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-François Caulier & Michel Grabisch & Agnieszka Rusinowska, 2015. "An allocation rule for dynamic random network formation processes," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 60(2), pages 283-313, October.
    2. László Á. Kóczy, 2018. "Partition Function Form Games," Theory and Decision Library C, Springer, number 978-3-319-69841-0, December.
    3. repec:hal:pseose:halshs-01207823 is not listed on IDEAS
    4. Gonzalez, Stéphane & Rostom, Fatma Zahra, 2022. "Sharing the global outcomes of finite natural resource exploitation: A dynamic coalitional stability perspective," Mathematical Social Sciences, Elsevier, vol. 119(C), pages 1-10.
    5. Chander, Parkash & Wooders, Myrna, 2020. "Subgame-perfect cooperation in an extensive game," Journal of Economic Theory, Elsevier, vol. 187(C).
    6. Junnosuke Shino & Shinichi Ishihara & Shimpei Yamauchi, 2022. "Shapley Mapping and Its Axiomatizations in n -Person Cooperative Interval Games," Mathematics, MDPI, vol. 10(21), pages 1-14, October.
    7. Laszlo A. Koczy, 2019. "The risk-based core for cooperative games with uncertainty," CERS-IE WORKING PAPERS 1906, Institute of Economics, Centre for Economic and Regional Studies.
    8. Imma Curiel, 2015. "Compensation rules for multi-stage sequencing games," Annals of Operations Research, Springer, vol. 225(1), pages 65-82, February.
    9. Yang, Jian & Li, Jianbin, 2020. "Cooperative game with nondeterministic returns," Journal of Mathematical Economics, Elsevier, vol. 88(C), pages 123-140.
    10. Habis, Helga & Herings, P. Jean-Jacques, 2011. "Transferable utility games with uncertainty," Journal of Economic Theory, Elsevier, vol. 146(5), pages 2126-2139, September.
    11. Ehud Lehrer & Marco Scarsini, 2013. "On the Core of Dynamic Cooperative Games," Dynamic Games and Applications, Springer, vol. 3(3), pages 359-373, September.
    12. Konstantin Avrachenkov & Laura Cottatellucci & Lorenzo Maggi, 2014. "Confidence Intervals for the Shapley–Shubik Power Index in Markovian Games," Dynamic Games and Applications, Springer, vol. 4(1), pages 10-31, March.
    13. Donald Nganmegni Njoya & Issofa Moyouwou & Nicolas Gabriel Andjiga, 2021. "The equal-surplus Shapley value for chance-constrained games on finite sample spaces," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 463-499, June.
    14. Gerichhausen, M. & Berkhout, E.D. & Hamers, H.J.M. & Manyong, V.M., 2008. "A Game Theoretic Approach to Analyse Cooperation between Rural Households in Northern Nigeria," Discussion Paper 2008-62, Tilburg University, Center for Economic Research.
    15. Llerena, Francesc & Mauri, Llúcia, 2017. "On the existence of the Dutta–Ray’s egalitarian solution," Mathematical Social Sciences, Elsevier, vol. 89(C), pages 92-99.
    16. Gerichhausen, M. & Berkhout, E.D. & Hamers, H.J.M. & Manyong, V.M., 2009. "A quantitative framework to analyse cooperation between rural households," Agricultural Systems, Elsevier, vol. 101(3), pages 173-185, July.
    17. Németh, Tibor & Pintér, Miklós, 2017. "The non-emptiness of the weak sequential core of a transferable utility game with uncertainty," Journal of Mathematical Economics, Elsevier, vol. 69(C), pages 1-6.
    18. van den Brink, René & Rusinowska, Agnieszka, 2022. "The degree measure as utility function over positions in graphs and digraphs," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1033-1044.
    19. Routledge, R.R., 2014. "Deviations, uncertainty and the core," Games and Economic Behavior, Elsevier, vol. 88(C), pages 286-297.
    20. Ketelaars, Martijn & Borm, Peter & Kort, Peter M., 2023. "Dynamic Stability of Cooperative Investment under Uncertainty," Other publications TiSEM 64e99402-3217-4efa-a759-0, Tilburg University, School of Economics and Management.
    21. Routledge R. R., 2012. "On Communication and the Weak Sequential Core," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 12(1), pages 1-22, September.

    More about this item

    Keywords

    Cooperative games; Transfers; Nash equilibrium;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:133:y:2022:i:c:p:77-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.