IDEAS home Printed from https://ideas.repec.org/a/eee/forpol/v38y2014icp56-64.html
   My bibliography  Save this article

Optimal rotation age for carbon sequestration and biodiversity conservation in Vietnam

Author

Listed:
  • Nghiem, Nhung

Abstract

Biodiversity loss is a major problem in terms of loss of genetic and ecosystem services and more specifically via impacts on the livelihoods, food security and health of the poor. This study modeled forest management strategies that balance economic gains and biodiversity conservation benefits in planted tropical forests. A forest-level model was developed that maximized the net present value (NPV) from selling timber and carbon sequestration while maintaining a given level of biodiversity (as per the population density of birds). The model was applied to Eucalyptus urophylla planted forests in Yen Bai Province, Vietnam. It was found that the inclusion of biodiversity conservation in the model induces a longer optimal rotation age compared to the period that maximizes the joint value from timber and carbon sequestration (from 8 to 10.9years). The average NPV when considering timber values plus carbon sequestration was 13million Vietnamese Dong (VND) ha−1 (765USDha−1), and timber, carbon sequestration and biodiversity values were 11million VND (676 USD) ha−1. Given this differential, governments in such tropical countries may need to consider additional incentives to forest owners if they are to encourage maximizing biodiversity and its associated benefits. The results also have some implications for implementing the climate control measure of “Reducing Emissions from Deforestation and Forest Degradation-plus (REDD+)” in developing countries, i.e., payment for carbon sequestration and biodiversity benefits in planted forests.

Suggested Citation

  • Nghiem, Nhung, 2014. "Optimal rotation age for carbon sequestration and biodiversity conservation in Vietnam," Forest Policy and Economics, Elsevier, vol. 38(C), pages 56-64.
  • Handle: RePEc:eee:forpol:v:38:y:2014:i:c:p:56-64
    DOI: 10.1016/j.forpol.2013.04.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1389934113000531
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.forpol.2013.04.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bulte, Erwin H. & van Kooten, G. Cornelis, 2001. "Harvesting and conserving a species when numbers are low: population viability and gambler's ruin in bioeconomic models," Ecological Economics, Elsevier, vol. 37(1), pages 87-100, April.
    2. Norman Myers & Russell A. Mittermeier & Cristina G. Mittermeier & Gustavo A. B. da Fonseca & Jennifer Kent, 2000. "Biodiversity hotspots for conservation priorities," Nature, Nature, vol. 403(6772), pages 853-858, February.
    3. Eppink, Florian V. & van den Bergh, Jeroen C.J.M., 2007. "Ecological theories and indicators in economic models of biodiversity loss and conservation: A critical review," Ecological Economics, Elsevier, vol. 61(2-3), pages 284-293, March.
    4. Tapan Mitra & Henry Y. Wan, 1985. "Some Theoretical Results on the Economics of Forestry," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 52(2), pages 263-282.
    5. Juutinen, Artti & Monkkonen, Mikko, 2004. "Testing alternative indicators for biodiversity conservation in old-growth boreal forests: ecology and economics," Ecological Economics, Elsevier, vol. 50(1-2), pages 35-48, September.
    6. Mitra, Tapan & Wan, Henry Jr., 1986. "On the faustmann solution to the forest management problem," Journal of Economic Theory, Elsevier, vol. 40(2), pages 229-249, December.
    7. J. H. Lawton & D. E. Bignell & B. Bolton & G. F. Bloemers & P. Eggleton & P. M. Hammond & M. Hodda & R. D. Holt & T. B. Larsen & N. A. Mawdsley & N. E. Stork & D. S. Srivastava & A. D. Watt, 1998. "Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest," Nature, Nature, vol. 391(6662), pages 72-76, January.
    8. Hartman, Richard, 1976. "The Harvesting Decision When a Standing Forest Has Value," Economic Inquiry, Western Economic Association International, vol. 14(1), pages 52-58, March.
    9. G. Cornelis van Kooten & Clark S. Binkley & Gregg Delcourt, 1995. "Effect of Carbon Taxes and Subsidies on Optimal Forest Rotation Age and Supply of Carbon Services," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 365-374.
    10. Gutrich, John & Howarth, Richard B., 2007. "Carbon sequestration and the optimal management of New Hampshire timber stands," Ecological Economics, Elsevier, vol. 62(3-4), pages 441-450, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. O’Donoghue, Cathal & O’Fatharta, Eoin & Geoghegan, Cathal & Ryan, Mary, 2024. "Farmland afforestation: Forest optimal rotation ages across discrete optimisation objectives," Land Use Policy, Elsevier, vol. 139(C).
    2. Nguyen, Trung Thanh & Nghiem, Nhung, 2016. "Optimal forest rotation for carbon sequestration and biodiversity conservation by farm income levels," Forest Policy and Economics, Elsevier, vol. 73(C), pages 185-194.
    3. Triviño, María & Juutinen, Artti & Mazziotta, Adriano & Miettinen, Kaisa & Podkopaev, Dmitry & Reunanen, Pasi & Mönkkönen, Mikko, 2015. "Managing a boreal forest landscape for providing timber, storing and sequestering carbon," Ecosystem Services, Elsevier, vol. 14(C), pages 179-189.
    4. Macpherson, Morag F. & Kleczkowski, Adam & Healey, John R. & Hanley, Nick, 2017. "Payment for multiple forest benefits alters the effect of tree disease on optimal forest rotation length," Ecological Economics, Elsevier, vol. 134(C), pages 82-94.
    5. Xie, Yalin & Lei, Xiangdong & Shi, Jingning, 2020. "Impacts of climate change on biological rotation of Larix olgensis plantations for timber production and carbon storage in northeast China using the 3-PGmix model," Ecological Modelling, Elsevier, vol. 435(C).
    6. Yuyang Yu & Jing Li & Zixiang Zhou & Li Zeng & Cheng Zhang, 2019. "Estimation of the Value of Ecosystem Carbon Sequestration Services under Different Scenarios in the Central China (the Qinling-Daba Mountain Area)," Sustainability, MDPI, vol. 12(1), pages 1-18, December.
    7. Saraev, Vadim & Valatin, Gregory & Peace, Andrew & Quine, Christopher, 2019. "How does a biodiversity value impact upon optimal rotation length? An investigation using species richness and forest stand age," Forest Policy and Economics, Elsevier, vol. 107(C), pages 1-1.
    8. Lee, Jongyeol & Kim, Hyungsub & Song, Cholho & Kim, Gang Sun & Lee, Woo-Kyun & Son, Yowhan, 2020. "Determining economically viable forest management option with consideration of ecosystem services in Korea: A strategy after successful national forestation," Ecosystem Services, Elsevier, vol. 41(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Trung Thanh & Nghiem, Nhung, 2016. "Optimal forest rotation for carbon sequestration and biodiversity conservation by farm income levels," Forest Policy and Economics, Elsevier, vol. 73(C), pages 185-194.
    2. Newman, D.H., 2002. "Forestry's golden rule and the development of the optimal forest rotation literature," Journal of Forest Economics, Elsevier, vol. 8(1), pages 5-27.
    3. Ken-Ichi Akao, 2011. "Optimum forest program when the carbon sequestration service of a forest has value," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 13(4), pages 323-343, December.
    4. Couture, Stéphane & Reynaud, Arnaud, 2011. "Forest management under fire risk when forest carbon sequestration has value," Ecological Economics, Elsevier, vol. 70(11), pages 2002-2011, September.
    5. Dwivedi, Puneet & Bailis, Robert & Stainback, Andrew & Carter, Douglas R., 2012. "Impact of payments for carbon sequestered in wood products and avoided carbon emissions on the profitability of NIPF landowners in the US South," Ecological Economics, Elsevier, vol. 78(C), pages 63-69.
    6. Asante, Patrick & Armstrong, Glen W. & Adamowicz, Wiktor L., 2011. "Carbon sequestration and the optimal forest harvest decision: A dynamic programming approach considering biomass and dead organic matter," Journal of Forest Economics, Elsevier, vol. 17(1), pages 3-17, January.
    7. Hoel, Michael & Holtsmark, Bjart & Holtsmark, Katinka, 2014. "Faustmann and the climate," Journal of Forest Economics, Elsevier, vol. 20(2), pages 192-210.
    8. Nghiem Thi Hong Nhung, 2016. "Optimal Forest Management for Carbon Sequestration: A Case Study of Eucalyptus urophylla and Acacia mangium in Yen Bai Province, Vietnam," EEPSEA Research Report rr2016046, Economy and Environment Program for Southeast Asia (EEPSEA), revised Apr 2016.
    9. Lintunen, Jussi & Uusivuori, Jussi, 2014. "On The Economics of Forest Carbon: Renewable and Carbon Neutral But Not Emission Free," Climate Change and Sustainable Development 165755, Fondazione Eni Enrico Mattei (FEEM).
    10. Olschewski, Roland & Benítez, Pablo C., 2010. "Optimizing joint production of timber and carbon sequestration of afforestation projects," Journal of Forest Economics, Elsevier, vol. 16(1), pages 1-10, January.
    11. Sahashi, Yoshinao, 2002. "The convergence of optimal forestry control," Journal of Mathematical Economics, Elsevier, vol. 37(3), pages 179-214, May.
    12. Wise, Russell M. & Cacho, Oscar J., 2008. "Bioeconomic meta-modelling of Indonesian agroforests as carbon sinks," 2008 Conference (52nd), February 5-8, 2008, Canberra, Australia 6772, Australian Agricultural and Resource Economics Society.
    13. Loisel, Patrice, 2020. "Under the risk of destructive event, are there differences between timber income based and carbon sequestration based silviculture?," Forest Policy and Economics, Elsevier, vol. 120(C).
    14. Dymond, Caren Christine & Giles-Hansen, Krysta & Asante, Patrick, 2020. "The forest mitigation-adaptation nexus: Economic benefits of novel planting regimes," Forest Policy and Economics, Elsevier, vol. 113(C).
    15. Zhou, Wei & Gao, Lan, 2016. "The impact of carbon trade on the management of short-rotation forest plantations," Forest Policy and Economics, Elsevier, vol. 62(C), pages 30-35.
    16. Yu, Zhihan & Ning, Zhuo & Chang, Wei-Yew & Chang, Sun Joseph & Yang, Hongqiang, 2023. "Optimal harvest decisions for the management of carbon sequestration forests under price uncertainty and risk preferences," Forest Policy and Economics, Elsevier, vol. 151(C).
    17. Tahvonen, Olli & Rautiainen, Aapo, 2017. "Economics of forest carbon storage and the additionality principle," Resource and Energy Economics, Elsevier, vol. 50(C), pages 124-134.
    18. Thompson, Matthew P. & Adams, Darius & Sessions, John, 2009. "Radiative forcing and the optimal rotation age," Ecological Economics, Elsevier, vol. 68(10), pages 2713-2720, August.
    19. Susaeta, Andres & Chang, Sun Joseph & Carter, Douglas R. & Lal, Pankaj, 2014. "Economics of carbon sequestration under fluctuating economic environment, forest management and technological changes: An application to forest stands in the southern United States," Journal of Forest Economics, Elsevier, vol. 20(1), pages 47-64.
    20. Johnston, Craig M.T. & Withey, Patrick, 2017. "Managing Forests for Carbon and Timber: A Markov Decision Model of Uneven-aged Forest Management With Risk," Ecological Economics, Elsevier, vol. 138(C), pages 31-39.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:forpol:v:38:y:2014:i:c:p:56-64. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/forpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.