IDEAS home Printed from https://ideas.repec.org/a/eee/jeeman/v51y2006i2p135-152.html
   My bibliography  Save this article

Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function

Author

Listed:
  • Lubowski, Ruben N.
  • Plantinga, Andrew J.
  • Stavins, Robert N.

Abstract

When and if the United States chooses to implement a greenhouse gas reduction program, it will be necessary to decide whether carbon sequestration policies - such as those that promote forestation and discourage deforestation - should be part of the domestic portfolio of compliance activities. We investigate the cost of forest-based carbon sequestration. In contrast with previous approaches, we econometrically examine micro-data on revealed landowner preferences, modeling six major private land uses in a comprehensive analysis of the contiguous United States. The econometric estimates are used to simulate landowner responses to sequestration policies. Key commodity prices are treated as endogenous and a carbon sink model is used to predict changes in carbon storage. Our estimated marginal costs of carbon sequestration are greater than those from previous engineering cost analyses and sectoral optimization models. Our estimated sequestration supply function is similar to the carbon abatement supply function from energy-based analyses, suggesting that forest-based carbon sequestration merits inclusion in a cost-effective portfolio of domestic U.S. climate change strategies.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Lubowski, Ruben N. & Plantinga, Andrew J. & Stavins, Robert N., 2006. "Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function," Journal of Environmental Economics and Management, Elsevier, vol. 51(2), pages 135-152, March.
  • Handle: RePEc:eee:jeeman:v:51:y:2006:i:2:p:135-152
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0095-0696(05)00074-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. van Kooten, G. Cornelis & Eagle, Alison J. & Manley, James G. & Smolak, Tara M., 2004. "How Costly Are Carbon Offsets? A Meta-Analysis Of Carbon Forest Sinks," Working Papers 18166, University of Victoria, Resource Economics and Policy.
    2. Darius M. Adams & Ralph J. Alig & DBruce A. McCarl & John M. Callaway & Steven M. Winnett, 1999. "Minimum Cost Strategies for Sequestering Carbon in Forests," Land Economics, University of Wisconsin Press, vol. 75(3), pages 360-374.
    3. Brian C. Murray & Bruce A. McCarl & Heng-Chi Lee, 2004. "Estimating Leakage from Forest Carbon Sequestration Programs," Land Economics, University of Wisconsin Press, vol. 80(1), pages 109-124.
    4. Hausman, Jerry & McFadden, Daniel, 1984. "Specification Tests for the Multinomial Logit Model," Econometrica, Econometric Society, vol. 52(5), pages 1219-1240, September.
    5. Lyubov A. Kurkalova & Catherine L. Kling & Jinhua Zhao, 2003. "Multiple Benefits of Carbon-Friendly Agricultural Practices: Empirical Assessment of Conservation Tillage," Center for Agricultural and Rural Development (CARD) Publications 03-wp326, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    6. J. Callaway & Bruce McCarl, 1996. "The economic consequences of substituting carbon payments for crop subsidies in U.S. agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 7(1), pages 15-43, January.
    7. G. Cornelis van Kooten & Alison Eagle & James Manley & Tara Smolak, 2004. "How Costly are Carbon Offsets? A Meta-Analysis of Forest Carbon Sinks," Working Papers 2004-01, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    8. Barry K. Goodwin & Gary W. Brester, 1995. "Structural Change in Factor Demand Relationships in the U.S. Food and Kindred Products Industry," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(1), pages 69-79.
    9. RICHARD M. Adams & DARIUS M. Adams & JOHN M. Callaway & CHING‐CHENG Chang & BRUCE A. Mccarl, 1993. "Sequestering Carbon On Agricultural Land: Social Cost And Impacts On Timber Markets," Contemporary Economic Policy, Western Economic Association International, vol. 11(1), pages 76-87, January.
    10. Antle, John & Capalbo, Susan & Mooney, Sian & Elliott, Edward & Paustian, Keith, 2003. "Spatial heterogeneity, contract design, and the efficiency of carbon sequestration policies for agriculture," Journal of Environmental Economics and Management, Elsevier, vol. 46(2), pages 231-250, September.
    11. Kurkalova, Lyubov A. & Kling, Catherine L. & Zhao, Jinhua, 2003. "Multiple Benefits of Carbon-Friendly Agricultural Practices: Empirical Assessment of Conservation Tillage in Iowa," Staff General Research Papers Archive 10194, Iowa State University, Department of Economics.
    12. Peter J. Parks & Ian W. Hardie, 1995. "Least-Cost Forest Carbon Reserves: Cost-Effective Subsidies to Convert Marginal Agricultural Land to Forests," Land Economics, University of Wisconsin Press, vol. 71(1), pages 122-136.
    13. Goulder, Lawrence H. & Mathai, Koshy, 2000. "Optimal CO2 Abatement in the Presence of Induced Technological Change," Journal of Environmental Economics and Management, Elsevier, vol. 39(1), pages 1-38, January.
    14. Newell, Richard G. & Stavins, Robert N., 2000. "Climate Change and Forest Sinks: Factors Affecting the Costs of Carbon Sequestration," Journal of Environmental Economics and Management, Elsevier, vol. 40(3), pages 211-235, November.
    15. DANIEL J. DUDEK & ALICE LeBLANC, 1990. "Offsetting New Co2 Emissions: A Rational First Greenhouse Policy Step," Contemporary Economic Policy, Western Economic Association International, vol. 8(3), pages 29-42, July.
    16. Schatzki, Todd, 2003. "Options, uncertainty and sunk costs:: an empirical analysis of land use change," Journal of Environmental Economics and Management, Elsevier, vol. 46(1), pages 86-105, July.
    17. Parks Peter J., 1995. "Explaining Irrational Land Use: Risk Aversion and Marginal Agricultural Land," Journal of Environmental Economics and Management, Elsevier, vol. 28(1), pages 34-47, January.
    18. Douglas J. Miller, 1999. "An Econometric Analysis of the Costs of Sequestering Carbon in Forests," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(4), pages 812-824.
    19. Ralph Alig & Darius Adams & Bruce McCarl & J. Callaway & Steven Winnett, 1997. "Assessing effects of mitigation strategies for global climate change with an intertemporal model of the U.S. forest and agriculture sectors," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 9(3), pages 259-274, April.
    20. Roger Sedjo & Joe Wisniewski & Alaric Sample & John Kinsman, 1995. "The economics of managing carbon via forestry: Assessment of existing studies," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 6(2), pages 139-165, September.
    21. Robert N. Stavins, 1999. "The Costs of Carbon Sequestration: A Revealed-Preference Approach," American Economic Review, American Economic Association, vol. 89(4), pages 994-1009, September.
    22. van 't Veld, Klaas & Plantinga, Andrew, 2005. "Carbon sequestration or abatement? The effect of rising carbon prices on the optimal portfolio of greenhouse-gas mitigation strategies," Journal of Environmental Economics and Management, Elsevier, vol. 50(1), pages 59-81, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stavins, Robert & Plantinga, Andrew & Lubowski, Ruben, 2005. "Land-Use Change and Carbon Sinks," RFF Working Paper Series dp-05-04, Resources for the Future.
    2. van Kooten, G. Cornelis & Sohngen, Brent, 2007. "Economics of Forest Ecosystem Carbon Sinks: A Review," International Review of Environmental and Resource Economics, now publishers, vol. 1(3), pages 237-269, September.
    3. van Kooten, G. Cornelis & Laaksonen-Craig, Susanna & Wang, Yichuan, 2007. "Costs of Creating Carbon Offset Credits via Forestry Activities: A Meta-Regression Analysis," Working Papers 37039, University of Victoria, Resource Economics and Policy.
    4. van Kooten, G. Cornelis & Eagle, Alison J. & Manley, James G. & Smolak, Tara M., 2004. "How Costly Are Carbon Offsets? A Meta-Analysis Of Carbon Forest Sinks," Working Papers 18166, University of Victoria, Resource Economics and Policy.
    5. Im, Eun Ho & Adams, Darius M. & Latta, Gregory S., 2007. "Potential impacts of carbon taxes on carbon flux in western Oregon private forests," Forest Policy and Economics, Elsevier, vol. 9(8), pages 1006-1017, May.
    6. Jung, Martina, 2003. "The Role of Forestry Sinks in the CDM - Analysing the Effects of Policy Decisions on the Carbon Market," Discussion Paper Series 26293, Hamburg Institute of International Economics.
    7. Hennessy, David A. & Saak, Alexander E., 2003. "State-Contingent Demand for Herbicide-Tolerance Seed Trait," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 28(1), pages 1-14, April.
    8. Yemshanov, Denys & McCarney, Geoffrey R. & Hauer, Grant & Luckert, M.K. (Marty) & Unterschultz, Jim & McKenney, Daniel W., 2015. "A real options-net present value approach to assessing land use change: A case study of afforestation in Canada," Forest Policy and Economics, Elsevier, vol. 50(C), pages 327-336.
    9. Jung, Martina, 2003. "The Role of Forestry Sinks in the CDM - Analysing the Effects of Policy Decisions on the Carbon Market," HWWA Discussion Papers 241, Hamburg Institute of International Economics (HWWA).
    10. Kim, Taeyoung & Langpap, Christian, 2016. "Agricultural landowners’ response to incentives for afforestation," Resource and Energy Economics, Elsevier, vol. 43(C), pages 93-111.
    11. Elberg Nielsen, Anne Sofie & Plantinga, Andrew J. & Alig, Ralph J., 2014. "Mitigating climate change through afforestation: New cost estimates for the United States," Resource and Energy Economics, Elsevier, vol. 36(1), pages 83-98.
    12. Oladipo S. Obembe & Nathan P. Hendricks, 2022. "Marginal cost of carbon sequestration through forest afforestation of agricultural land in the southeastern United States," Agricultural Economics, International Association of Agricultural Economists, vol. 53(S1), pages 59-73, November.
    13. Robert N. Stavins, 1999. "The Costs of Carbon Sequestration: A Revealed-Preference Approach," American Economic Review, American Economic Association, vol. 89(4), pages 994-1009, September.
    14. Newell, Richard G. & Stavins, Robert N., 2000. "Climate Change and Forest Sinks: Factors Affecting the Costs of Carbon Sequestration," Journal of Environmental Economics and Management, Elsevier, vol. 40(3), pages 211-235, November.
    15. Ruben N. Lubowski & Andrew J. Plantinga & Robert N. Stavins, 2008. "What Drives Land-Use Change in the United States? A National Analysis of Landowner Decisions," Land Economics, University of Wisconsin Press, vol. 84(4), pages 529-550.
    16. Matthews, Stephen & O'Connor, Raymond & Plantinga, Andrew J., 2002. "Quantifying the impacts on biodiversity of policies for carbon sequestration in forests," Ecological Economics, Elsevier, vol. 40(1), pages 71-87, January.
    17. Taeyoung Kim & Christian Langpap, 2015. "Incentives for Carbon Sequestration Using Forest Management," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(3), pages 491-520, November.
    18. Adetoye, Ayoade Matthew & Okojie, Luke O. & Akerele, Dare, 2018. "Forest carbon sequestration supply function for African countries: An econometric modelling approach," Forest Policy and Economics, Elsevier, vol. 90(C), pages 59-66.
    19. van 't Veld, Klaas & Plantinga, Andrew, 2005. "Carbon sequestration or abatement? The effect of rising carbon prices on the optimal portfolio of greenhouse-gas mitigation strategies," Journal of Environmental Economics and Management, Elsevier, vol. 50(1), pages 59-81, July.
    20. Latta, Gregory S. & Adams, Darius M. & Bell, Kathleen P. & Kline, Jeffrey D., 2016. "Evaluating land-use and private forest management responses to a potential forest carbon offset sales program in western Oregon (USA)," Forest Policy and Economics, Elsevier, vol. 65(C), pages 1-8.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jeeman:v:51:y:2006:i:2:p:135-152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622870 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.