IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v62y2024ipas1544612324000916.html
   My bibliography  Save this article

Risk transmission, systemic fragility of banks’ interacting customers and credit worthiness assessment

Author

Listed:
  • Cerqueti, Roy
  • Pampurini, Francesca
  • Quaranta, Anna Grazia
  • Storani, Saverio

Abstract

The analysis of monetary flows’ correlation resulting from clients’ mutual transactions is crucial for small/local banks in assessing customers’ creditworthiness. This paper offers a new method based on a complex network (customers are the nodes and their mutual financial flows the links). We detect the presence of vulnerable and dangerous clients within the contagion and propagation of external shocks mechanisms and exploit the informative content of the in- and out-paths of the network, with specific reference to those associated with the geodesic patterns. We test the model over a high-quality dataset referred to 2021. The results might support banks’ customers’ creditworthiness analysis.

Suggested Citation

  • Cerqueti, Roy & Pampurini, Francesca & Quaranta, Anna Grazia & Storani, Saverio, 2024. "Risk transmission, systemic fragility of banks’ interacting customers and credit worthiness assessment," Finance Research Letters, Elsevier, vol. 62(PA).
  • Handle: RePEc:eee:finlet:v:62:y:2024:i:pa:s1544612324000916
    DOI: 10.1016/j.frl.2024.105061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612324000916
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2024.105061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Darrell Duffie & Andreas Eckner & Guillaume Horel & Leandro Saita, 2009. "Frailty Correlated Default," Journal of Finance, American Finance Association, vol. 64(5), pages 2089-2123, October.
    2. Giesecke, Kay & Weber, Stefan, 2006. "Credit contagion and aggregate losses," Journal of Economic Dynamics and Control, Elsevier, vol. 30(5), pages 741-767, May.
    3. Gai, Prasanna & Kapadia, Sujit, 2010. "Contagion in financial networks," Bank of England working papers 383, Bank of England.
    4. Anastasios Petropoulos & Vasilis Siakoulis & Evaggelos Stavroulakis & Aristotelis Klamargias, 2019. "A robust machine learning approach for credit risk analysis of large loan level datasets using deep learning and extreme gradient boosting," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Are post-crisis statistical initiatives completed?, volume 49, Bank for International Settlements.
    5. Freixas, Xavier & Parigi, Bruno M & Rochet, Jean-Charles, 2000. "Systemic Risk, Interbank Relations, and Liquidity Provision by the Central Bank," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 32(3), pages 611-638, August.
    6. Horst, Ulrich, 2007. "Stochastic cascades, credit contagion, and large portfolio losses," Journal of Economic Behavior & Organization, Elsevier, vol. 63(1), pages 25-54, May.
    7. D. J. Hand & W. E. Henley, 1997. "Statistical Classification Methods in Consumer Credit Scoring: a Review," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 160(3), pages 523-541, September.
    8. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis using Machine and Deep learning models," Working Papers 2018:08, Department of Economics, University of Venice "Ca' Foscari".
    9. Franklin Allen & Douglas Gale, 2000. "Financial Contagion," Journal of Political Economy, University of Chicago Press, vol. 108(1), pages 1-33, February.
    10. Lv, Jiamin & Ben, Shenglin & Huang, Wenli & Xu, Yueling, 2023. "How to reduce the default contagion risk of intercorporate credit guarantee networks? Evidence from China," Emerging Markets Review, Elsevier, vol. 55(C).
    11. Roy Cerqueti & Francesca Pampurini & Annagiulia Pezzola & Anna Grazia Quaranta, 2022. "Dangerous liasons and hot customers for banks," Review of Quantitative Finance and Accounting, Springer, vol. 59(1), pages 65-89, July.
    12. Khandani, Amir E. & Kim, Adlar J. & Lo, Andrew W., 2010. "Consumer credit-risk models via machine-learning algorithms," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2767-2787, November.
    13. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    14. Dominique Guegan & Peter Martey Addo & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Post-Print halshs-01835164, HAL.
    15. Giesecke, Kay & Weber, Stefan, 2004. "Cyclical correlations, credit contagion, and portfolio losses," Journal of Banking & Finance, Elsevier, vol. 28(12), pages 3009-3036, December.
    16. Peter Martey Addo & Dominique Guégan & Bertrand Hassani, 2018. "Credit Risk Analysis using Machine and Deep learning models," Documents de travail du Centre d'Economie de la Sorbonne 18003, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    17. Daniele Petrone & Vito Latora, 2016. "A dynamic approach merging network theory and credit risk techniques to assess systemic risk in financial networks," Papers 1610.00795, arXiv.org, revised Apr 2018.
    18. Robert A. Jarrow & Fan Yu, 2008. "Counterparty Risk and the Pricing of Defaultable Securities," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 20, pages 481-515, World Scientific Publishing Co. Pte. Ltd..
    19. Claudia Berloco & Gianmarco De Francisci Morales & Daniele Frassineti & Greta Greco & Hashani Kumarasinghe & Marco Lamieri & Emanuele Massaro & Arianna Miola & Shuyi Yang, 2021. "Predicting corporate credit risk: Network contagion via trade credit," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-29, April.
    20. Anastasios Petropoulos & Vasilis Siakoulis & Evaggelos Stavroulakis & Aristotelis Klamargias, 2019. "A robust machine learning approach for credit risk analysis of large loan-level datasets using deep learning and extreme gradient boosting," IFC Bulletins chapters, in: Bank for International Settlements (ed.), The use of big data analytics and artificial intelligence in central banking, volume 50, Bank for International Settlements.
    21. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    22. Brennan, M J, 1979. "The Pricing of Contingent Claims in Discrete Time Models," Journal of Finance, American Finance Association, vol. 34(1), pages 53-68, March.
    23. Jorion, Philippe & Zhang, Gaiyan, 2007. "Good and bad credit contagion: Evidence from credit default swaps," Journal of Financial Economics, Elsevier, vol. 84(3), pages 860-883, June.
    24. Lacher, R. C. & Coats, Pamela K. & Sharma, Shanker C. & Fant, L. Franklin, 1995. "A neural network for classifying the financial health of a firm," European Journal of Operational Research, Elsevier, vol. 85(1), pages 53-65, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roy Cerqueti & Francesca Pampurini & Annagiulia Pezzola & Anna Grazia Quaranta, 2022. "Dangerous liasons and hot customers for banks," Review of Quantitative Finance and Accounting, Springer, vol. 59(1), pages 65-89, July.
    2. Apostolos Ampountolas & Titus Nyarko Nde & Paresh Date & Corina Constantinescu, 2021. "A Machine Learning Approach for Micro-Credit Scoring," Risks, MDPI, vol. 9(3), pages 1-20, March.
    3. Chen, Tingqiang & Wang, Jiepeng & Liu, Haifei & He, Yuanping, 2019. "Contagion model on counterparty credit risk in the CRT market by considering the heterogeneity of counterparties and preferential-random mixing attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 458-480.
    4. Anand, Kartik & Gai, Prasanna & Kapadia, Sujit & Brennan, Simon & Willison, Matthew, 2013. "A network model of financial system resilience," Journal of Economic Behavior & Organization, Elsevier, vol. 85(C), pages 219-235.
    5. Anastasios Petropoulos & Vasilis Siakoulis & Evaggelos Stavroulakis & Aristotelis Klamargias, 2019. "A robust machine learning approach for credit risk analysis of large loan level datasets using deep learning and extreme gradient boosting," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Are post-crisis statistical initiatives completed?, volume 49, Bank for International Settlements.
    6. Anastasios Petropoulos & Vasilis Siakoulis & Evaggelos Stavroulakis & Aristotelis Klamargias, 2019. "A robust machine learning approach for credit risk analysis of large loan-level datasets using deep learning and extreme gradient boosting," IFC Bulletins chapters, in: Bank for International Settlements (ed.), The use of big data analytics and artificial intelligence in central banking, volume 50, Bank for International Settlements.
    7. Martin Leo & Suneel Sharma & K. Maddulety, 2019. "Machine Learning in Banking Risk Management: A Literature Review," Risks, MDPI, vol. 7(1), pages 1-22, March.
    8. Irving Fisher Committee, 2019. "The use of big data analytics and artificial intelligence in central banking," IFC Bulletins, Bank for International Settlements, number 50.
    9. A. R. Provenzano & D. Trifir`o & A. Datteo & L. Giada & N. Jean & A. Riciputi & G. Le Pera & M. Spadaccino & L. Massaron & C. Nordio, 2020. "Machine Learning approach for Credit Scoring," Papers 2008.01687, arXiv.org.
    10. Jun Park, Jong & Jang, Hyun Jin, 2022. "An analytic approach To network-based modelling for contagious defaults," Finance Research Letters, Elsevier, vol. 44(C).
    11. Steinbacher, Matjaz & Steinbacher, Mitja & Steinbacher, Matej, 2013. "Credit Contagion in Financial Markets: A Network-Based Approach," MPRA Paper 49616, University Library of Munich, Germany.
    12. Qian, Qian & Chao, Xiangrui & Feng, Hairong, 2023. "Internal or external control? How to respond to credit risk contagion in complex enterprises network," International Review of Financial Analysis, Elsevier, vol. 87(C).
    13. Theuri, Joseph & Olukuru, John, 2022. "The impact of Artficial Intelligence and how it is shaping banking," KBA Centre for Research on Financial Markets and Policy Working Paper Series 61, Kenya Bankers Association (KBA).
    14. Tingqiang Chen & Binqing Xiao & Haifei Liu, 2018. "Credit Risk Contagion in an Evolving Network Model Integrating Spillover Effects and Behavioral Interventions," Complexity, Hindawi, vol. 2018, pages 1-16, March.
    15. Ladley, Daniel, 2013. "Contagion and risk-sharing on the inter-bank market," Journal of Economic Dynamics and Control, Elsevier, vol. 37(7), pages 1384-1400.
    16. Egloff, Daniel & Leippold, Markus & Vanini, Paolo, 2007. "A simple model of credit contagion," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2475-2492, August.
    17. Qian, Qian & Feng, Hairong & Gu, Jing, 2021. "The influence of risk attitude on credit risk contagion—Perspective of information dissemination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    18. Wenlang Zhang & Gaofeng Han & Steven Chan, 2014. "How Strong are the Linkages between Real Estate and Other Sectors in China?," Working Papers 112014, Hong Kong Institute for Monetary Research.
    19. Salima Smiti & Makram Soui, 2020. "Bankruptcy Prediction Using Deep Learning Approach Based on Borderline SMOTE," Information Systems Frontiers, Springer, vol. 22(5), pages 1067-1083, October.
    20. Hossein Hassani & Xu Huang & Emmanuel Silva & Mansi Ghodsi, 2020. "Deep Learning and Implementations in Banking," Annals of Data Science, Springer, vol. 7(3), pages 433-446, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:62:y:2024:i:pa:s1544612324000916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.