IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1610.00795.html
   My bibliography  Save this paper

A dynamic approach merging network theory and credit risk techniques to assess systemic risk in financial networks

Author

Listed:
  • Daniele Petrone
  • Vito Latora

Abstract

The interconnectedness of financial institutions affects instability and credit crises. To quantify systemic risk we introduce here the PD model, a dynamic model that combines credit risk techniques with a contagion mechanism on the network of exposures among banks. A potential loss distribution is obtained through a multi-period Monte Carlo simulation that considers the probability of default (PD) of the banks and their tendency of defaulting in the same time interval. A contagion process increases the PD of banks exposed toward distressed counterparties. The systemic risk is measured by statistics of the loss distribution, while the contribution of each node is quantified by the new measures PDRank and PDImpact. We illustrate how the model works on the network of the European Global Systemically Important Banks. For a certain range of the banks' capital and of their assets volatility, our results reveal the emergence of a strong contagion regime where lower default correlation between banks corresponds to higher losses. This is the opposite of the diversification benefits postulated by standard credit risk models used by banks and regulators who could therefore underestimate the capital needed to overcome a period of crisis, thereby contributing to the financial system instability.

Suggested Citation

  • Daniele Petrone & Vito Latora, 2016. "A dynamic approach merging network theory and credit risk techniques to assess systemic risk in financial networks," Papers 1610.00795, arXiv.org, revised Apr 2018.
  • Handle: RePEc:arx:papers:1610.00795
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1610.00795
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kanno, Masayasu, 2022. "Exploring risks in syndicated loan networks: Evidence from real estate investment trusts," Economic Modelling, Elsevier, vol. 115(C).
    2. Daniele Petrone & Neofytos Rodosthenous & Vito Latora, 2022. "An AI approach for managing financial systemic risk via bank bailouts by taxpayers," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Yu Zhao & Huaming Du & Qing Li & Fuzhen Zhuang & Ji Liu & Gang Kou, 2022. "A Comprehensive Survey on Enterprise Financial Risk Analysis from Big Data Perspective," Papers 2211.14997, arXiv.org, revised May 2023.
    4. Chen, Wei & Hou, Xiaoli & Jiang, Manrui & Jiang, Cheng, 2022. "Identifying systemically important financial institutions in complex network: A case study of Chinese stock market," Emerging Markets Review, Elsevier, vol. 50(C).
    5. Wang, Ze & Gao, Xiangyun & Huang, Shupei & Sun, Qingru & Chen, Zhihua & Tang, Renwu & Di, Zengru, 2022. "Measuring systemic risk contribution of global stock markets: A dynamic tail risk network approach," International Review of Financial Analysis, Elsevier, vol. 84(C).
    6. Roy Cerqueti & Francesca Pampurini & Annagiulia Pezzola & Anna Grazia Quaranta, 2022. "Dangerous liasons and hot customers for banks," Review of Quantitative Finance and Accounting, Springer, vol. 59(1), pages 65-89, July.
    7. Zebin Zhao & Dongling Chen & Luqi Wang & Chuqiao Han, 2018. "Credit Risk Diffusion in Supply Chain Finance: A Complex Networks Perspective," Sustainability, MDPI, vol. 10(12), pages 1-20, December.
    8. Cerqueti, Roy & Pampurini, Francesca & Quaranta, Anna Grazia & Storani, Saverio, 2024. "Risk transmission, systemic fragility of banks’ interacting customers and credit worthiness assessment," Finance Research Letters, Elsevier, vol. 62(PA).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1610.00795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.