IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v654y2024ics037843712400637x.html
   My bibliography  Save this article

Crypto network

Author

Listed:
  • Pernagallo, Giuseppe

Abstract

The empirical literature has studied linkages in the cryptocurrency market because knowing how shocks pass from one currency to another helps policymakers and practitioners better counter their propagation in these and related markets. This paper contributes to this literature by proposing a methodology based on Granger causality and network analysis. Using the daily log-returns of 22 cryptocurrencies over the period 2018–2023, I develop a VAR model to infer unidirectional or bidirectional Granger causality among cryptocurrencies. These relationships are then transformed into a directed network and several centrality measures are calculated. The centrality measures are also observed over the years to understand the dynamics of the cryptocurrency network. I find out that each one unit increase in eigencentrality is associated with a 0.22 percent increase in log-returns. Cryptocurrencies are nontrivially connected, and in this sample Cardano, Dogecoin, Gridcoin, and Neo are amongst the most central in the network throughout the period. Some cryptocurrencies, such as Dogecoin or Neo, show decreasing centrality over the years, while others, such as Gridcoin, Litecoin, Namecoin, or Ripple, gain centrality. These results support the idea that the cryptocurrency market is no longer exclusively associated with Bitcoin and lay the groundwork for further study of shock propagation in financial markets.

Suggested Citation

  • Pernagallo, Giuseppe, 2024. "Crypto network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 654(C).
  • Handle: RePEc:eee:phsmap:v:654:y:2024:i:c:s037843712400637x
    DOI: 10.1016/j.physa.2024.130128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712400637X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.130128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pernagallo, Giuseppe & Torrisi, Benedetto, 2020. "Blindfolded monkeys or financial analysts: Who is worth your money? New evidence on informational inefficiencies in the U.S. stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    2. Chan, Stephen & Chu, Jeffrey & Zhang, Yuanyuan & Nadarajah, Saralees, 2022. "An extreme value analysis of the tail relationships between returns and volumes for high frequency cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 59(C).
    3. Shahzad, Syed Jawad Hussain & Bouri, Elie & Ahmad, Tanveer & Naeem, Muhammad Abubakr, 2022. "Extreme tail network analysis of cryptocurrencies and trading strategies," Finance Research Letters, Elsevier, vol. 44(C).
    4. Kim, Myeong Jun & Canh, Nguyen Phuc & Park, Sung Y., 2021. "Causal relationship among cryptocurrencies: A conditional quantile approach," Finance Research Letters, Elsevier, vol. 42(C).
    5. Ferreira, Paulo & Kristoufek, Ladislav & Pereira, Eder Johnson de Area Leão, 2020. "DCCA and DMCA correlations of cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    6. Shahzad, Syed Jawad Hussain & Bouri, Elie & Ahmad, Tanveer & Naeem, Muhammad Abubakr & Vo, Xuan Vinh, 2021. "The pricing of bad contagion in cryptocurrencies: A four-factor pricing model," Finance Research Letters, Elsevier, vol. 41(C).
    7. Chuffart, Thomas, 2022. "Interest in cryptocurrencies predicts conditional correlation dynamics," Finance Research Letters, Elsevier, vol. 46(PA).
    8. Prass, Taiane Schaedler & Pumi, Guilherme, 2021. "On the behavior of the DFA and DCCA in trend-stationary processes," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    9. Everton Anger Cavalheiro & Kelmara Mendes Vieira & Pascal Silas Thue, 2024. "The impact of investor greed and fear on cryptocurrency returns: a Granger causality analysis of Bitcoin and Ethereum," Review of Behavioral Finance, Emerald Group Publishing Limited, vol. 16(5), pages 819-835, April.
    10. Nadir Khan & Muhammad Zohair Durrani & Naila Mushtaq & S M Nabeel ul Haq & Babar Ijaz, 2022. "The Relationships among Cryptocurrencies: A Granger Causality Analysis," iRASD Journal of Economics, International Research Alliance for Sustainable Development (iRASD), vol. 4(2), pages 264-274, June.
    11. Nie, Chun-Xiao, 2020. "Correlation dynamics in the cryptocurrency market based on dimensionality reduction analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    12. Xun Zhang & Fengbin Lu & Rui Tao & Shouyang Wang, 2021. "The time-varying causal relationship between the Bitcoin market and internet attention," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-19, December.
    13. Fernandes, Leonardo H.S. & Bouri, Elie & Silva, José W.L. & Bejan, Lucian & de Araujo, Fernando H.A., 2022. "The resilience of cryptocurrency market efficiency to COVID-19 shock," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    14. Nie, Chun-Xiao, 2022. "Analysis of critical events in the correlation dynamics of cryptocurrency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    15. Baur, Dirk G. & Hong, KiHoon & Lee, Adrian D., 2018. "Bitcoin: Medium of exchange or speculative assets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 54(C), pages 177-189.
    16. Goodell, John W. & Ben Jabeur, Sami & Saâdaoui, Foued & Nasir, Muhammad Ali, 2023. "Explainable artificial intelligence modeling to forecast bitcoin prices," International Review of Financial Analysis, Elsevier, vol. 88(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bouri, Elie & Kamal, Elham & Kinateder, Harald, 2023. "FTX Collapse and systemic risk spillovers from FTX Token to major cryptocurrencies," Finance Research Letters, Elsevier, vol. 56(C).
    2. Dunbar, Kwamie & Owusu-Amoako, Johnson, 2023. "Predictability of crypto returns: The impact of trading behavior," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    3. Kumar, Ashish & Iqbal, Najaf & Mitra, Subrata Kumar & Kristoufek, Ladislav & Bouri, Elie, 2022. "Connectedness among major cryptocurrencies in standard times and during the COVID-19 outbreak," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 77(C).
    4. Boubaker, Sabri & Karim, Sitara & Naeem, Muhammad Abubakr & Rahman, Molla Ramizur, 2024. "On the prediction of systemic risk tolerance of cryptocurrencies," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    5. Bouri, Elie & Saeed, Tareq & Vo, Xuan Vinh & Roubaud, David, 2021. "Quantile connectedness in the cryptocurrency market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 71(C).
    6. Nie, Chun-Xiao, 2022. "Analysis of critical events in the correlation dynamics of cryptocurrency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    7. Paola Stolfi & Mauro Bernardi & Davide Vergni, 2022. "Robust estimation of time-dependent precision matrix with application to the cryptocurrency market," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-25, December.
    8. Mokni, Khaled, 2021. "When, where, and how economic policy uncertainty predicts Bitcoin returns and volatility? A quantiles-based analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 65-73.
    9. Nie, Chun-Xiao, 2023. "Time-varying characteristics of information flow networks in the Chinese market: An analysis based on sector indices," Finance Research Letters, Elsevier, vol. 54(C).
    10. Bonaparte, Yosef & Bernile, Gennaro, 2023. "A new “Wall Street Darling?” effects of regulation sentiment in cryptocurrency markets," Finance Research Letters, Elsevier, vol. 52(C).
    11. Chen, Yan & Zhang, Lei & Bouri, Elie, 2024. "Co-Bubble transmission across clean and dirty Cryptocurrencies: Network and portfolio analysis," Journal of International Money and Finance, Elsevier, vol. 145(C).
    12. Ahmed, Mohamed Shaker & El-Masry, Ahmed A. & Al-Maghyereh, Aktham I. & Kumar, Satish, 2024. "Cryptocurrency volatility: A review, synthesis, and research agenda," Research in International Business and Finance, Elsevier, vol. 71(C).
    13. Ghosh, Bikramaditya & Bouri, Elie & Wee, Jung Bum & Zulfiqar, Noshaba, 2023. "Return and volatility properties: Stylized facts from the universe of cryptocurrencies and NFTs," Research in International Business and Finance, Elsevier, vol. 65(C).
    14. Binh Nguyen Thanh & Thai Nguyen Vu Hong & Huy Pham & Thanh Nguyen Cong & Thu Pham Thi Anh, 2023. "Are the stabilities of stablecoins connected?," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 50(3), pages 515-525, September.
    15. Nie, Chun-Xiao & Song, Fu-Tie, 2023. "Stable versus fragile community structures in the correlation dynamics of Chinese industry indices," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    16. Ahmed, Walid M.A., 2022. "Robust drivers of Bitcoin price movements: An extreme bounds analysis," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    17. Fakhfekh, Mohamed & Bejaoui, Azza & Bariviera, Aurelio F. & Jeribi, Ahmed, 2024. "Dependence structure between NFT, DeFi and cryptocurrencies in turbulent times: An Archimax copula approach," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
    18. Belanes, Amel & Saâdaoui, Foued & Amirat, Amina & Rabbouch, Hana, 2024. "Safety assessment of cryptocurrencies as risky assets during the COVID-19 pandemic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 651(C).
    19. Umar, Zaghum & Usman, Muhammad & Choi, Sun-Yong & Rice, John, 2023. "Diversification benefits of NFTs for conventional asset investors: Evidence from CoVaR with higher moments and optimal hedge ratios," Research in International Business and Finance, Elsevier, vol. 65(C).
    20. Walid Mensi & Mobeen Ur Rehman & Muhammad Shafiullah & Khamis Hamed Al-Yahyaee & Ahmet Sensoy, 2021. "High frequency multiscale relationships among major cryptocurrencies: portfolio management implications," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-21, December.

    More about this item

    Keywords

    Cryptocurrencies; Digital Markets; Finance; Macroeconomics; Networks; Time Series Econometrics;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G1 - Financial Economics - - General Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:654:y:2024:i:c:s037843712400637x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.