IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v41y2021ics1544612320316767.html
   My bibliography  Save this article

Intraday interactions between high-frequency trading and price efficiency

Author

Listed:
  • Ben Ammar, Imen
  • Hellara, Slaheddine

Abstract

We examine intraday interactions between high-frequency trading (HFT) and the informational quality of prices to provide evidence on the role of HFT in the price discovery process. HFT and price efficiency display reverse L-shaped patterns with low levels at the open and strong improvement across the trading day. Using the panel vector auto-regression model, we find bi-directional causality between HFT and price efficiency: High-frequency traders react actively to movements in price efficiency, while greater intensity of HFT is associated with more efficient prices. Overall, HFT activities can be considered as efficient ways to incorporate information quickly and accurately into prices.

Suggested Citation

  • Ben Ammar, Imen & Hellara, Slaheddine, 2021. "Intraday interactions between high-frequency trading and price efficiency," Finance Research Letters, Elsevier, vol. 41(C).
  • Handle: RePEc:eee:finlet:v:41:y:2021:i:c:s1544612320316767
    DOI: 10.1016/j.frl.2020.101862
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612320316767
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2020.101862?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karel Mertens & Morten O. Ravn, 2013. "The Dynamic Effects of Personal and Corporate Income Tax Changes in the United States," American Economic Review, American Economic Association, vol. 103(4), pages 1212-1247, June.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Hasbrouck, Joel, 1995. "One Security, Many Markets: Determining the Contributions to Price Discovery," Journal of Finance, American Finance Association, vol. 50(4), pages 1175-1199, September.
    4. Frijns, Bart & Indriawan, Ivan & Tourani-Rad, Alireza, 2018. "The interactions between price discovery, liquidity and algorithmic trading for U.S.-Canadian cross-listed shares," International Review of Financial Analysis, Elsevier, vol. 56(C), pages 136-152.
    5. Amélie Charles & Olivier Darné, 2009. "Variance‐Ratio Tests Of Random Walk: An Overview," Journal of Economic Surveys, Wiley Blackwell, vol. 23(3), pages 503-527, July.
    6. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    7. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    8. Chordia, Tarun & Roll, Richard & Subrahmanyam, Avanidhar, 2005. "Evidence on the speed of convergence to market efficiency," Journal of Financial Economics, Elsevier, vol. 76(2), pages 271-292, May.
    9. Lo, Andrew W. & MacKinlay, A. Craig, 1989. "The size and power of the variance ratio test in finite samples : A Monte Carlo investigation," Journal of Econometrics, Elsevier, vol. 40(2), pages 203-238, February.
    10. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    11. Terrence Hendershott & Charles M. Jones & Albert J. Menkveld, 2011. "Does Algorithmic Trading Improve Liquidity?," Journal of Finance, American Finance Association, vol. 66(1), pages 1-33, February.
    12. Koski, Jennifer Lynch & Michaely, Roni, 2000. "Prices, Liquidity, and the Information Content of Trades," The Review of Financial Studies, Society for Financial Studies, vol. 13(3), pages 659-696.
    13. M. Hashem Pesaran, 2007. "A simple panel unit root test in the presence of cross-section dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 265-312.
    14. Jonathan Brogaard & Terrence Hendershott & Ryan Riordan, 2014. "High-Frequency Trading and Price Discovery," The Review of Financial Studies, Society for Financial Studies, vol. 27(8), pages 2267-2306.
    15. Hasbrouck, Joel & Saar, Gideon, 2013. "Low-latency trading," Journal of Financial Markets, Elsevier, vol. 16(4), pages 646-679.
    16. Maria Rosa Borges, 2010. "Efficient market hypothesis in European stock markets," The European Journal of Finance, Taylor & Francis Journals, vol. 16(7), pages 711-726.
    17. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range‐Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
    18. Andrew Worthington & Helen Higgs, 2009. "Efficiency in the Australian stock market, 1875-2006: a note on extreme long-run random walk behaviour," Applied Economics Letters, Taylor & Francis Journals, vol. 16(3), pages 301-306.
    19. Pesaran, M. Hashem & Vanessa Smith, L. & Yamagata, Takashi, 2013. "Panel unit root tests in the presence of a multifactor error structure," Journal of Econometrics, Elsevier, vol. 175(2), pages 94-115.
    20. Mobarek, Asma & Fiorante, Angelo, 2014. "The prospects of BRIC countries: Testing weak-form market efficiency," Research in International Business and Finance, Elsevier, vol. 30(C), pages 217-232.
    21. Kim, Jae H., 2006. "Wild bootstrapping variance ratio tests," Economics Letters, Elsevier, vol. 92(1), pages 38-43, July.
    22. Carsten Jentsch & Kurt G. Lunsford, 2019. "The Dynamic Effects of Personal and Corporate Income Tax Changes in the United States: Comment," American Economic Review, American Economic Association, vol. 109(7), pages 2655-2678, July.
    23. Karel Mertens & Morten O. Ravn, 2019. "The Dynamic Effects of Personal and Corporate Income Tax Changes in the United States: Reply," American Economic Review, American Economic Association, vol. 109(7), pages 2679-2691, July.
    24. Jorge L. Urrutia, 1995. "Tests Of Random Walk And Market Efficiency For Latin American Emerging Equity Markets," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 18(3), pages 299-309, September.
    25. Kim, Jae H., 2009. "Automatic variance ratio test under conditional heteroskedasticity," Finance Research Letters, Elsevier, vol. 6(3), pages 179-185, September.
    26. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
    27. Uwe Hassler & Mehdi Hosseinkouchack, 2019. "Ratio tests under limiting normality," Econometric Reviews, Taylor & Francis Journals, vol. 38(7), pages 793-813, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ryu, Doojin & Webb, Robert I. & Yu, Jinyoung, 2024. "Stock price synchronicity and market liquidity: The role of funding liquidity," Finance Research Letters, Elsevier, vol. 61(C).
    2. Jin, Liwei & Yuan, Xianghui & Li, Xiang & Ma, Huanglong & Lian, Feng, 2022. "Would widening price limits improve the efficiency of price discovery?," Finance Research Letters, Elsevier, vol. 50(C).
    3. Alexandre Aidov & Olesya Lobanova, 2021. "Volatility and Depth in Commodity and FX Futures Markets," JRFM, MDPI, vol. 14(11), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    2. Mirzaee Ghazani, Majid & Khalili Araghi, Mansour, 2014. "Evaluation of the adaptive market hypothesis as an evolutionary perspective on market efficiency: Evidence from the Tehran stock exchange," Research in International Business and Finance, Elsevier, vol. 32(C), pages 50-59.
    3. Boya, Christophe M., 2019. "From efficient markets to adaptive markets: Evidence from the French stock exchange," Research in International Business and Finance, Elsevier, vol. 49(C), pages 156-165.
    4. Charles, Amélie & Darné, Olivier & Fouilloux, Jessica, 2011. "Testing the martingale difference hypothesis in CO2 emission allowances," Economic Modelling, Elsevier, vol. 28(1-2), pages 27-35, January.
    5. Ibikunle, Gbenga & Aquilina, Matteo & Diaz-Rainey, Ivan & Sun, Yuxin, 2021. "City goes dark: Dark trading and adverse selection in aggregate markets," Journal of Empirical Finance, Elsevier, vol. 64(C), pages 1-22.
    6. Ligot, Stephanie & Gillet, Roland & Veryzhenko, Iryna, 2021. "Intraday volatility smile: Effects of fragmentation and high frequency trading on price efficiency," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 75(C).
    7. Amélie Charles & Olivier Darné & Jessica Fouilloux, 2010. "Testing the Martingale Difference Hypothesis in the EU ETS Markets for the CO2 Emission Allowances: Evidence from Phase I and Phase II," Post-Print hal-00797491, HAL.
    8. Charles, Amélie & Darné, Olivier & Kim, Jae H., 2012. "Exchange-rate return predictability and the adaptive markets hypothesis: Evidence from major foreign exchange rates," Journal of International Money and Finance, Elsevier, vol. 31(6), pages 1607-1626.
    9. Neil Kellard & Denise Osborn & Jerry Coakley & John C. Nankervis & Periklis Kougoulis & Jerry Coakley, 2015. "Generalized Variance-Ratio Tests in the Presence of Statistical Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(5), pages 687-705, September.
    10. Graham Smith & Aneta Dyakova, 2016. "The Relative Predictability of Stock Markets in the Americas," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 21(2), pages 131-142, April.
    11. Mohanty, Sunil K. & Mishra, Sibanjan, 2020. "Regulatory reform and market efficiency: The case of Indian agricultural commodity futures markets," Research in International Business and Finance, Elsevier, vol. 52(C).
    12. Olimpia Neagu, 2019. "The Link between Economic Complexity and Carbon Emissions in the European Union Countries: A Model Based on the Environmental Kuznets Curve (EKC) Approach," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    13. Hongbo Liu & Shuanglu Liang, 2019. "The Nexus between Energy Consumption, Biodiversity, and Economic Growth in Lancang-Mekong Cooperation (LMC): Evidence from Cointegration and Granger Causality Tests," IJERPH, MDPI, vol. 16(18), pages 1-15, September.
    14. Vinay Patel, 2015. "Price Discovery in US and Australian Stock and Options Markets," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 27, July-Dece.
    15. Aye, Goodness C. & Gil-Alana, Luis A. & Gupta, Rangan & Wohar, Mark E., 2017. "The efficiency of the art market: Evidence from variance ratio tests, linear and nonlinear fractional integration approaches," International Review of Economics & Finance, Elsevier, vol. 51(C), pages 283-294.
    16. Giancarlo Corsetti & Romain Lafarguette & Arnaud Mehl, 2019. "Fast Trading and the Virtue of Entropy: Evidence from the Foreign Exchange Market," Discussion Papers 1914, Centre for Macroeconomics (CFM).
    17. Charles, Amélie & Darné, Olivier, 2009. "The efficiency of the crude oil markets: Evidence from variance ratio tests," Energy Policy, Elsevier, vol. 37(11), pages 4267-4272, November.
    18. Conrad, Jennifer & Wahal, Sunil & Xiang, Jin, 2015. "High-frequency quoting, trading, and the efficiency of prices," Journal of Financial Economics, Elsevier, vol. 116(2), pages 271-291.
    19. Sean Holly & Ivan Petrella, 2012. "Factor Demand Linkages, Technology Shocks, and the Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 948-963, November.
    20. Breedon, Francis & Chen, Louisa & Ranaldo, Angelo & Vause, Nicholas, 2023. "Judgment day: Algorithmic trading around the Swiss franc cap removal," Journal of International Economics, Elsevier, vol. 140(C).

    More about this item

    Keywords

    Market microstructure; High-frequency trading; Algorithmic trading; Price efficiency; Variance ratio test; Panel vector auto-regression;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G19 - Financial Economics - - General Financial Markets - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:41:y:2021:i:c:s1544612320316767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.