IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v40y2021ics154461232030667x.html
   My bibliography  Save this article

Cryptocurrencies and the low volatility anomaly

Author

Listed:
  • Burggraf, Tobias
  • Rudolf, Markus

Abstract

This study examines the low volatility anomaly in the cryptocurrency market. Constructing long-short portfolios for a sample of 1000 cryptocurrencies for the period April 28, 2013 – November 1, 2019, we find no evidence of a significant low volatility premium. This result is in contrast to the empirical findings from the equity, bond, and commodity markets and contributes to the debate on the efficiency of cryptocurrencies. In contrast to earlier studies, we find that the cryptocurrency market is far more efficient than expected, even after controlling for different sample sizes, rebalancing periods and / or portfolio construction methodologies.

Suggested Citation

  • Burggraf, Tobias & Rudolf, Markus, 2021. "Cryptocurrencies and the low volatility anomaly," Finance Research Letters, Elsevier, vol. 40(C).
  • Handle: RePEc:eee:finlet:v:40:y:2021:i:c:s154461232030667x
    DOI: 10.1016/j.frl.2020.101683
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S154461232030667X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2020.101683?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    2. Zhang, Wei & Wang, Pengfei & Li, Xiao & Shen, Dehua, 2018. "The inefficiency of cryptocurrency and its cross-correlation with Dow Jones Industrial Average," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 658-670.
    3. Louis K.C. Chan & Jason Karceski & Josef Lakonishok, 1999. "On Portfolio Optimization: Forecasting Covariances and Choosing the Risk Model," NBER Working Papers 7039, National Bureau of Economic Research, Inc.
    4. Ang, Andrew & Hodrick, Robert J. & Xing, Yuhang & Zhang, Xiaoyan, 2009. "High idiosyncratic volatility and low returns: International and further U.S. evidence," Journal of Financial Economics, Elsevier, vol. 91(1), pages 1-23, January.
    5. Cathy Yi-Hsuan Chen & Christian M. Hafner, 2019. "Sentiment-Induced Bubbles in the Cryptocurrency Market," JRFM, MDPI, vol. 12(2), pages 1-12, April.
    6. Nicholas Barberis & Ming Huang, 2008. "Stocks as Lotteries: The Implications of Probability Weighting for Security Prices," American Economic Review, American Economic Association, vol. 98(5), pages 2066-2100, December.
    7. Karceski, Jason, 2002. "Returns-Chasing Behavior, Mutual Funds, and Beta's Death," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 37(4), pages 559-594, December.
    8. Jegadeesh, Narasimhan, 1990. "Evidence of Predictable Behavior of Security Returns," Journal of Finance, American Finance Association, vol. 45(3), pages 881-898, July.
    9. Katsiampa, Paraskevi, 2019. "Volatility co-movement between Bitcoin and Ether," Finance Research Letters, Elsevier, vol. 30(C), pages 221-227.
    10. Frazzini, Andrea & Pedersen, Lasse Heje, 2014. "Betting against beta," Journal of Financial Economics, Elsevier, vol. 111(1), pages 1-25.
    11. Haugen, Robert A. & Heins, A. James, 1975. "Risk and the Rate of Return on Financial Assets: Some Old Wine in New Bottles," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 10(5), pages 775-784, December.
    12. Baur, Dirk G. & Dimpfl, Thomas, 2018. "Asymmetric volatility in cryptocurrencies," Economics Letters, Elsevier, vol. 173(C), pages 148-151.
    13. Banz, Rolf W., 1981. "The relationship between return and market value of common stocks," Journal of Financial Economics, Elsevier, vol. 9(1), pages 3-18, March.
    14. Bouri, Elie & Azzi, Georges & Dyhrberg, Anne Haubo, 2017. "On the return-volatility relationship in the Bitcoin market around the price crash of 2013," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 11, pages 1-16.
    15. Dyhrberg, Anne Haubo, 2016. "Bitcoin, gold and the dollar – A GARCH volatility analysis," Finance Research Letters, Elsevier, vol. 16(C), pages 85-92.
    16. Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
    17. Bariviera, Aurelio F., 2017. "The inefficiency of Bitcoin revisited: A dynamic approach," Economics Letters, Elsevier, vol. 161(C), pages 1-4.
    18. Andrew Ang & Robert J. Hodrick & Yuhang Xing & Xiaoyan Zhang, 2006. "The Cross‐Section of Volatility and Expected Returns," Journal of Finance, American Finance Association, vol. 61(1), pages 259-299, February.
    19. Bruce N. Lehmann, 1990. "Fads, Martingales, and Market Efficiency," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 105(1), pages 1-28.
    20. Al-Yahyaee, Khamis Hamed & Mensi, Walid & Yoon, Seong-Min, 2018. "Efficiency, multifractality, and the long-memory property of the Bitcoin market: A comparative analysis with stock, currency, and gold markets," Finance Research Letters, Elsevier, vol. 27(C), pages 228-234.
    21. Bouri, Elie & Lau, Chi Keung Marco & Lucey, Brian & Roubaud, David, 2019. "Trading volume and the predictability of return and volatility in the cryptocurrency market," Finance Research Letters, Elsevier, vol. 29(C), pages 340-346.
    22. Michael J. Brennan & Xiaolong Cheng & Feifei Li, 2012. "Agency and Institutional Investment," European Financial Management, European Financial Management Association, vol. 18(1), pages 1-27, January.
    23. Alok Kumar, 2009. "Who Gambles in the Stock Market?," Journal of Finance, American Finance Association, vol. 64(4), pages 1889-1933, August.
    24. Chan, Louis K C & Karceski, Jason & Lakonishok, Josef, 1999. "On Portfolio Optimization: Forecasting Covariances and Choosing the Risk Model," The Review of Financial Studies, Society for Financial Studies, vol. 12(5), pages 937-974.
    25. Narasimhan Jegadeesh & Sheridan Titman, 2001. "Profitability of Momentum Strategies: An Evaluation of Alternative Explanations," Journal of Finance, American Finance Association, vol. 56(2), pages 699-720, April.
    26. Hsu, Ching-Chi & Chen, Miao-Ling, 2017. "The timing of low-volatility strategy," Finance Research Letters, Elsevier, vol. 23(C), pages 114-120.
    27. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    28. Blitz, D.C. & van Vliet, P., 2007. "The Volatility Effect: Lower Risk without Lower Return," ERIM Report Series Research in Management ERS-2007-044-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cakici, Nusret & Shahzad, Syed Jawad Hussain & Będowska-Sójka, Barbara & Zaremba, Adam, 2024. "Machine learning and the cross-section of cryptocurrency returns," International Review of Financial Analysis, Elsevier, vol. 94(C).
    2. Long, Huaigang & Demir, Ender & Będowska-Sójka, Barbara & Zaremba, Adam & Shahzad, Syed Jawad Hussain, 2022. "Is geopolitical risk priced in the cross-section of cryptocurrency returns?," Finance Research Letters, Elsevier, vol. 49(C).
    3. Kaya, Orçun & Mostowfi, Mehdi, 2022. "Low-volatility strategies for highly liquid cryptocurrencies," Finance Research Letters, Elsevier, vol. 46(PB).
    4. Fieberg, Christian & Liedtke, Gerrit & Zaremba, Adam, 2024. "Cryptocurrency anomalies and economic constraints," International Review of Financial Analysis, Elsevier, vol. 94(C).
    5. Fieberg, Christian & Günther, Steffen & Poddig, Thorsten & Zaremba, Adam, 2024. "Non-standard errors in the cryptocurrency world," International Review of Financial Analysis, Elsevier, vol. 92(C).
    6. Tuğba Güz & İlayda İsabetli Fidan, 2022. "The Characteristics of Cryptocurrency Market Volatility: Empirical Study For Five Cryptocurrency," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 10(2), pages 69-84, December.
    7. Sadaqat, Mohsin & Butt, Hilal Anwar, 2023. "Stop-loss rules and momentum payoffs in cryptocurrencies," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    8. Jia, Yuecheng & Wu, Yangru & Yan, Shu & Liu, Yuzheng, 2023. "A seesaw effect in the cryptocurrency market: Understanding the return cross predictability of cryptocurrencies," Journal of Empirical Finance, Elsevier, vol. 74(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, December.
    2. Stephen A. Gorman & Frank J. Fabozzi, 2021. "The ABC’s of the alternative risk premium: academic roots," Journal of Asset Management, Palgrave Macmillan, vol. 22(6), pages 405-436, October.
    3. Malcolm Baker & Mathias F. Hoeyer & Jeffrey Wurgler, 2016. "The Risk Anomaly Tradeoff of Leverage," NBER Working Papers 22116, National Bureau of Economic Research, Inc.
    4. Bradrania, Reza & Veron, Jose Francisco & Wu, Winston, 2023. "The beta anomaly and the quality effect in international stock markets," Journal of Behavioral and Experimental Finance, Elsevier, vol. 38(C).
    5. David Blitz & Matthias X. Hanauer & Pim Vliet, 2021. "The Volatility Effect in China," Journal of Asset Management, Palgrave Macmillan, vol. 22(5), pages 338-349, September.
    6. Constantinos Antoniou & John A. Doukas & Avanidhar Subrahmanyam, 2016. "Investor Sentiment, Beta, and the Cost of Equity Capital," Management Science, INFORMS, vol. 62(2), pages 347-367, February.
    7. Ahmed, Walid M.A., 2020. "Is there a risk-return trade-off in cryptocurrency markets? The case of Bitcoin," Journal of Economics and Business, Elsevier, vol. 108(C).
    8. Blitz, David & Pang, Juan & van Vliet, Pim, 2013. "The volatility effect in emerging markets," Emerging Markets Review, Elsevier, vol. 16(C), pages 31-45.
    9. Zhong, Angel & Gray, Philip, 2016. "The MAX effect: An exploration of risk and mispricing explanations," Journal of Banking & Finance, Elsevier, vol. 65(C), pages 76-90.
    10. Jansen, Maarten & Swinkels, Laurens & Zhou, Weili, 2021. "Anomalies in the China A-share market," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
    11. Sebastien Valeyre & Sofiane Aboura & Denis Grebenkov, 2019. "The Reactive Beta Model," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 42(1), pages 71-113, March.
    12. Alankar, Ashwin & Blausten, Peter & Scholes, Myron S., 2013. "The Cost of Constraints: Risk Management, Agency Theory and Asset Prices," Research Papers 2135, Stanford University, Graduate School of Business.
    13. Amit Goyal, 2012. "Empirical cross-sectional asset pricing: a survey," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 26(1), pages 3-38, March.
    14. Flögel, Volker & Schlag, Christian & Zunft, Claudia, 2021. "Momentum-managed equity factors," SAFE Working Paper Series 317, Leibniz Institute for Financial Research SAFE.
    15. Waszczuk, Antonina, 2013. "A risk-based explanation of return patterns—Evidence from the Polish stock market," Emerging Markets Review, Elsevier, vol. 15(C), pages 186-210.
    16. Melisa Ozdamar & Levent Akdeniz & Ahmet Sensoy, 2021. "Lottery-like preferences and the MAX effect in the cryptocurrency market," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-27, December.
    17. Bali, Turan G. & Cakici, Nusret & Whitelaw, Robert F., 2011. "Maxing out: Stocks as lotteries and the cross-section of expected returns," Journal of Financial Economics, Elsevier, vol. 99(2), pages 427-446, February.
    18. Joshua Traut, 2023. "What we know about the low-risk anomaly: a literature review," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 37(3), pages 297-324, September.
    19. Walkshäusl, Christian, 2014. "The MAX effect: European evidence," Journal of Banking & Finance, Elsevier, vol. 42(C), pages 1-10.
    20. Flögel, Volker & Schlag, Christian & Zunft, Claudia, 2022. "Momentum-Managed Equity Factors," Journal of Banking & Finance, Elsevier, vol. 137(C).

    More about this item

    Keywords

    Asset pricing; Low volatility; Cryptocurrencies;
    All these keywords.

    JEL classification:

    • G1 - Financial Economics - - General Financial Markets
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:40:y:2021:i:c:s154461232030667x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.