IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v67y2020ics0301420719309985.html
   My bibliography  Save this article

Bitcoin and gold price returns: A quantile regression and NARDL analysis

Author

Listed:
  • Jareño, Francisco
  • González, María de la O
  • Tolentino, Marta
  • Sierra, Karen

Abstract

This research analyses the sensitivity of Bitcoin returns to changes in gold price returns and some other international risk factors such as US stock market returns, interest rates, crude oil prices, the volatility index of the American stock market (VIX) and the Saint Louis financial stress index (STLFSI). This study applies the quantile regression approach for the 2010–2018 period. For robustness, this paper splits the whole sample period into two different subsamples: a more volatile and a less volatile sub-period. Moreover, to capture both long- and short-run asymmetries between Bitcoin and gold price returns, an asymmetric nonlinear cointegration approach (NARDL) is applied. The results evidence that the most relevant risk factor is the VIX index, followed by changes in the STLFSI stress index, and both show negative and statistically significant effects on Bitcoin returns in most periods and quantiles. The US stock market returns have statistically significant effects (with positive sign) on Bitcoin returns in all periods and specifically in high quantiles. Bitcoin returns show negative statistically significant sensitivity to changes in nominal interest rates in the highest quantile and the full period. Moreover, Bitcoin returns show negative and statistically significant sensitivity to oil returns at low quantiles, by serving as a safe-haven asset during economic turmoil. Therefore, in general, the sensitivity of Bitcoin returns to movements in international risk factors tends to be more pronounced in extreme market conditions (bullish and bearish scenarios), showing the highest explanatory power in the lowest quantile. Finally, we have applied the non-linear ARDL approach to analyse the long- and short-run relations between Bitcoin and gold price returns and have found a positive and statistically significant connectedness between them.

Suggested Citation

  • Jareño, Francisco & González, María de la O & Tolentino, Marta & Sierra, Karen, 2020. "Bitcoin and gold price returns: A quantile regression and NARDL analysis," Resources Policy, Elsevier, vol. 67(C).
  • Handle: RePEc:eee:jrpoli:v:67:y:2020:i:c:s0301420719309985
    DOI: 10.1016/j.resourpol.2020.101666
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420719309985
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2020.101666?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mª Caridad Sevillano & Francisco Jareño, 2018. "The impact of international factors on Spanish company returns: a quantile regression approach," Risk Management, Palgrave Macmillan, vol. 20(1), pages 51-76, February.
    2. Fang, Libing & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2019. "Does global economic uncertainty matter for the volatility and hedging effectiveness of Bitcoin?," International Review of Financial Analysis, Elsevier, vol. 61(C), pages 29-36.
    3. Demir, Ender & Gozgor, Giray & Lau, Chi Keung Marco & Vigne, Samuel A., 2018. "Does economic policy uncertainty predict the Bitcoin returns? An empirical investigation," Finance Research Letters, Elsevier, vol. 26(C), pages 145-149.
    4. Ferrer, Román & Jammazi, Rania & Bolós, Vicente J. & Benítez, Rafael, 2018. "Interactions between financial stress and economic activity for the U.S.: A time- and frequency-varying analysis using wavelets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 446-462.
    5. Köchling, Gerrit & Müller, Janis & Posch, Peter N., 2019. "Does the introduction of futures improve the efficiency of Bitcoin?," Finance Research Letters, Elsevier, vol. 30(C), pages 367-370.
    6. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    7. Selmi, Refk & Mensi, Walid & Hammoudeh, Shawkat & Bouoiyour, Jamal, 2018. "Is Bitcoin a hedge, a safe haven or a diversifier for oil price movements? A comparison with gold," Energy Economics, Elsevier, vol. 74(C), pages 787-801.
    8. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    9. Aysan, Ahmet Faruk & Demir, Ender & Gozgor, Giray & Lau, Chi Keung Marco, 2019. "Effects of the geopolitical risks on Bitcoin returns and volatility," Research in International Business and Finance, Elsevier, vol. 47(C), pages 511-518.
    10. Francisco Jareno, 2008. "Spanish stock market sensitivity to real interest and inflation rates: an extension of the Stone two-factor model with factors of the Fama and French three-factor model," Applied Economics, Taylor & Francis Journals, vol. 40(24), pages 3159-3171.
    11. Bouri, Elie & Gupta, Rangan & Tiwari, Aviral Kumar & Roubaud, David, 2017. "Does Bitcoin hedge global uncertainty? Evidence from wavelet-based quantile-in-quantile regressions," Finance Research Letters, Elsevier, vol. 23(C), pages 87-95.
    12. Beneki, Christina & Koulis, Alexandros & Kyriazis, Nikolaos A. & Papadamou, Stephanos, 2019. "Investigating volatility transmission and hedging properties between Bitcoin and Ethereum," Research in International Business and Finance, Elsevier, vol. 48(C), pages 219-227.
    13. Corbet, Shaen & Meegan, Andrew & Larkin, Charles & Lucey, Brian & Yarovaya, Larisa, 2018. "Exploring the dynamic relationships between cryptocurrencies and other financial assets," Economics Letters, Elsevier, vol. 165(C), pages 28-34.
    14. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    15. Bouri, Elie & Gupta, Rangan & Lahiani, Amine & Shahbaz, Muhammad, 2018. "Testing for asymmetric nonlinear short- and long-run relationships between bitcoin, aggregate commodity and gold prices," Resources Policy, Elsevier, vol. 57(C), pages 224-235.
    16. Bouri, Elie & Gupta, Rangan & Lau, Chi Keung Marco & Roubaud, David & Wang, Shixuan, 2018. "Bitcoin and global financial stress: A copula-based approach to dependence and causality in the quantiles," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 297-307.
    17. Elie Bouri & Rangan Gupta & Chi Keung Marco Lau & David Roubaud, 2019. "Risk Aversion and Bitcoin Returns in Normal, Bull, and Bear Markets," Working Papers 201927, University of Pretoria, Department of Economics.
    18. Nimantha Manamperi, 2015. "A Comparative Analysis on US Financial Stress Indicators," International Journal of Economics and Financial Issues, Econjournals, vol. 5(2), pages 613-623.
    19. Francisco Jareño & Román Ferrer & Stanislava Miroslavova, 2016. "US stock market sensitivity to interest and inflation rates: a quantile regression approach," Applied Economics, Taylor & Francis Journals, vol. 48(26), pages 2469-2481, June.
    20. Klein, Tony & Pham Thu, Hien & Walther, Thomas, 2018. "Bitcoin is not the New Gold – A comparison of volatility, correlation, and portfolio performance," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 105-116.
    21. Paresh Kumar Narayan, 2005. "The saving and investment nexus for China: evidence from cointegration tests," Applied Economics, Taylor & Francis Journals, vol. 37(17), pages 1979-1990.
    22. Corbet, Shaen & Larkin, Charles & Lucey, Brian & Meegan, Andrew & Yarovaya, Larisa, 2020. "Cryptocurrency reaction to FOMC Announcements: Evidence of heterogeneity based on blockchain stack position," Journal of Financial Stability, Elsevier, vol. 46(C).
    23. Kurka, Josef, 2019. "Do cryptocurrencies and traditional asset classes influence each other?," Finance Research Letters, Elsevier, vol. 31(C), pages 38-46.
    24. Bouri, Elie & Lau, Chi Keung Marco & Lucey, Brian & Roubaud, David, 2019. "Trading volume and the predictability of return and volatility in the cryptocurrency market," Finance Research Letters, Elsevier, vol. 29(C), pages 340-346.
    25. Ferrer, Román & Shahzad, Syed Jawad Hussain & López, Raquel & Jareño, Francisco, 2018. "Time and frequency dynamics of connectedness between renewable energy stocks and crude oil prices," Energy Economics, Elsevier, vol. 76(C), pages 1-20.
    26. Smales, L.A., 2019. "Bitcoin as a safe haven: Is it even worth considering?," Finance Research Letters, Elsevier, vol. 30(C), pages 385-393.
    27. Tiwari, Aviral Kumar & Jana, R.K. & Roubaud, David, 2019. "The policy uncertainty and market volatility puzzle: Evidence from wavelet analysis," Finance Research Letters, Elsevier, vol. 31(C).
    28. Harumi Ohmi & Tatsuyoshi Okimoto, 2016. "Trends in stock-bond correlations," Applied Economics, Taylor & Francis Journals, vol. 48(6), pages 536-552, February.
    29. Guesmi, Khaled & Saadi, Samir & Abid, Ilyes & Ftiti, Zied, 2019. "Portfolio diversification with virtual currency: Evidence from bitcoin," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 431-437.
    30. Arize, Augustine C. & Malindretos, John & Igwe, Emmanuel U., 2017. "Do exchange rate changes improve the trade balance: An asymmetric nonlinear cointegration approach," International Review of Economics & Finance, Elsevier, vol. 49(C), pages 313-326.
    31. Robin C. Sickles & William C. Horrace (ed.), 2014. "Festschrift in Honor of Peter Schmidt," Springer Books, Springer, edition 127, number 978-1-4899-8008-3, December.
    32. Troster, Victor & Tiwari, Aviral Kumar & Shahbaz, Muhammad & Macedo, Demian Nicolás, 2019. "Bitcoin returns and risk: A general GARCH and GAS analysis," Finance Research Letters, Elsevier, vol. 30(C), pages 187-193.
    33. Ji, Qiang & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2018. "Network causality structures among Bitcoin and other financial assets: A directed acyclic graph approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 70(C), pages 203-213.
    34. Bariviera, Aurelio F. & Basgall, María José & Hasperué, Waldo & Naiouf, Marcelo, 2017. "Some stylized facts of the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 82-90.
    35. Chevapatrakul, Thanaset & Mascia, Danilo V., 2019. "Detecting overreaction in the Bitcoin market: A quantile autoregression approach," Finance Research Letters, Elsevier, vol. 30(C), pages 371-377.
    36. Laura Ferrando & Román Ferrer & Francisco Jareño, 2017. "Interest Rate Sensitivity of Spanish Industries: A Quantile Regression Approach," Manchester School, University of Manchester, vol. 85(2), pages 212-242, March.
    37. Al-Yahyaee, Khamis Hamed & Rehman, Mobeen Ur & Mensi, Walid & Al-Jarrah, Idries Mohammad Wanas, 2019. "Can uncertainty indices predict Bitcoin prices? A revisited analysis using partial and multivariate wavelet approaches," The North American Journal of Economics and Finance, Elsevier, vol. 49(C), pages 47-56.
    38. Balcilar, Mehmet & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2017. "Can volume predict Bitcoin returns and volatility? A quantiles-based approach," Economic Modelling, Elsevier, vol. 64(C), pages 74-81.
    39. Cathy W. S. Chen & Mike K. P. So & Thomas C. Chiang, 2016. "Evidence of Stock Returns and Abnormal Trading Volume: A Threshold Quantile Regression Approach," The Japanese Economic Review, Springer, vol. 67(1), pages 96-124, March.
    40. Jammazi, Rania & Ferrer, Román & Jareño, Francisco & Hammoudeh, Shawkat M., 2017. "Main driving factors of the interest rate-stock market Granger causality," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 260-280.
    41. Jammazi, Rania & Ferrer, Román & Jareño, Francisco & Shahzad, Syed Jawad Hussain, 2017. "Time-varying causality between crude oil and stock markets: What can we learn from a multiscale perspective?," International Review of Economics & Finance, Elsevier, vol. 49(C), pages 453-483.
    42. Dyhrberg, Anne Haubo, 2016. "Bitcoin, gold and the dollar – A GARCH volatility analysis," Finance Research Letters, Elsevier, vol. 16(C), pages 85-92.
    43. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    44. Aalborg, Halvor Aarhus & Molnár, Peter & de Vries, Jon Erik, 2019. "What can explain the price, volatility and trading volume of Bitcoin?," Finance Research Letters, Elsevier, vol. 29(C), pages 255-265.
    45. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    46. Dyhrberg, Anne Haubo, 2016. "Hedging capabilities of bitcoin. Is it the virtual gold?," Finance Research Letters, Elsevier, vol. 16(C), pages 139-144.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    2. Ahmed, Walid M.A., 2022. "Robust drivers of Bitcoin price movements: An extreme bounds analysis," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    3. Jareño, Francisco & González, María de la O. & López, Raquel & Ramos, Ana Rosa, 2021. "Cryptocurrencies and oil price shocks: A NARDL analysis in the COVID-19 pandemic," Resources Policy, Elsevier, vol. 74(C).
    4. Chu, Jeffrey & Chan, Stephen & Zhang, Yuanyuan, 2021. "Bitcoin versus high-performance technology stocks in diversifying against global stock market indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    5. Long, Shaobo & Pei, Hongxia & Tian, Hao & Lang, Kun, 2021. "Can both Bitcoin and gold serve as safe-haven assets? — A comparative analysis based on the NARDL model," International Review of Financial Analysis, Elsevier, vol. 78(C).
    6. Duc Huynh, Toan Luu & Burggraf, Tobias & Wang, Mei, 2020. "Gold, platinum, and expected Bitcoin returns," Journal of Multinational Financial Management, Elsevier, vol. 56(C).
    7. Achraf Ghorbel & Wajdi Frikha & Yasmine Snene Manzli, 2022. "Testing for asymmetric non-linear short- and long-run relationships between crypto-currencies and stock markets," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 12(3), pages 387-425, September.
    8. Al-Shboul, Mohammad & Assaf, Ata & Mokni, Khaled, 2022. "When bitcoin lost its position: Cryptocurrency uncertainty and the dynamic spillover among cryptocurrencies before and during the COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 83(C).
    9. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    10. Haffar, Adlane & Le Fur, Eric, 2021. "Structural vector error correction modelling of Bitcoin price," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 170-178.
    11. Cynthia Weiyi Cai & Rui Xue & Bi Zhou, 2023. "Cryptocurrency puzzles: a comprehensive review and re-introduction," Journal of Accounting Literature, Emerald Group Publishing Limited, vol. 46(1), pages 26-50, June.
    12. Parthajit Kayal & Purnima Rohilla, 2021. "Bitcoin in the economics and finance literature: a survey," SN Business & Economics, Springer, vol. 1(7), pages 1-21, July.
    13. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    14. Mokni, Khaled & Youssef, Manel & Ajmi, Ahdi Noomen, 2022. "COVID-19 pandemic and economic policy uncertainty: The first test on the hedging and safe haven properties of cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 60(C).
    15. Ghabri, Yosra & Ben Rhouma, Oussama & Gana, Marjène & Guesmi, Khaled & Benkraiem, Ramzi, 2022. "Information transmission among energy markets, cryptocurrencies, and stablecoins under pandemic conditions," International Review of Financial Analysis, Elsevier, vol. 82(C).
    16. Guo, Xiaochun & Lu, Fengbin & Wei, Yunjie, 2021. "Capture the contagion network of bitcoin – Evidence from pre and mid COVID-19," Research in International Business and Finance, Elsevier, vol. 58(C).
    17. Gaies, Brahim & Nakhli, Mohamed Sahbi & Sahut, Jean Michel & Guesmi, Khaled, 2021. "Is Bitcoin rooted in confidence? – Unraveling the determinants of globalized digital currencies," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    18. Papadamou, Stephanos & Kyriazis, Nikolaos A. & Tzeremes, Panayiotis G., 2021. "Non-linear causal linkages of EPU and gold with major cryptocurrencies during bull and bear markets," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
    19. Svetoslav Borisov, 2024. "Bitcoin – Hedge or Speculative Asset: Analysis of Its Role and Nature," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 148-170.
    20. Hanif, Waqas & Areola Hernandez, Jose & Troster, Victor & Kang, Sang Hoon & Yoon, Seong-Min, 2022. "Nonlinear dependence and spillovers between cryptocurrency and global/regional equity markets," Pacific-Basin Finance Journal, Elsevier, vol. 74(C).

    More about this item

    Keywords

    Bitcoin; Stock market; International factors; Quantile regression; NARDL;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • O51 - Economic Development, Innovation, Technological Change, and Growth - - Economywide Country Studies - - - U.S.; Canada

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:67:y:2020:i:c:s0301420719309985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.