IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v98y2016icp146-154.html
   My bibliography  Save this article

Recover energy from domestic wastewater using anaerobic membrane bioreactor: Operating parameters optimization and energy balance analysis

Author

Listed:
  • Mei, Xiaojie
  • Wang, Zhiwei
  • Miao, Yan
  • Wu, Zhichao

Abstract

Anaerobic membrane bioreactor (AnMBR) is a promising process to recover energy and water resource from domestic wastewater; however, its energy-efficiency needs substantial improvement for real applications. In this study, based on the methanogenic activity batch tests and critical flux determination, an optimization protocol for AnMBRs is reported and a flux-centered energy balance analysis is conducted. The results demonstrate that organic loading rate by sludge (OLRsludge) should be controlled within 0.43–0.90 kgCOD/(kgVSS·d), and the corresponding sludge retention time (SRT) should be in the range of 50 d to infinity. Energy balance analysis shows that the AnMBR systems at the temperature of 35 °C and 25 °C could achieve net energy recovery. For realizing energy-neutral operation, the corresponding fluxes should range from 8.3 to 9.5 L/(m2·h) at 35 °C and 6.0 to 6.7 L/(m2·h) at 25 °C, respectively. In the process design and operation, a relatively short hydraulic retention time (HRT) and an SRT close to 50 d should be considered in order to achieve an energy-efficient AnMBR performance.

Suggested Citation

  • Mei, Xiaojie & Wang, Zhiwei & Miao, Yan & Wu, Zhichao, 2016. "Recover energy from domestic wastewater using anaerobic membrane bioreactor: Operating parameters optimization and energy balance analysis," Energy, Elsevier, vol. 98(C), pages 146-154.
  • Handle: RePEc:eee:energy:v:98:y:2016:i:c:p:146-154
    DOI: 10.1016/j.energy.2016.01.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216000219
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.01.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tom Gleeson & Yoshihide Wada & Marc F. P. Bierkens & Ludovicus P. H. van Beek, 2012. "Water balance of global aquifers revealed by groundwater footprint," Nature, Nature, vol. 488(7410), pages 197-200, August.
    2. Mark A. Shannon & Paul W. Bohn & Menachem Elimelech & John G. Georgiadis & Benito J. Mariñas & Anne M. Mayes, 2008. "Science and technology for water purification in the coming decades," Nature, Nature, vol. 452(7185), pages 301-310, March.
    3. C. J. Vörösmarty & P. B. McIntyre & M. O. Gessner & D. Dudgeon & A. Prusevich & P. Green & S. Glidden & S. E. Bunn & C. A. Sullivan & C. Reidy Liermann & P. M. Davies, 2010. "Global threats to human water security and river biodiversity," Nature, Nature, vol. 467(7315), pages 555-561, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wandera, Simon M. & Qiao, Wei & Jiang, Mengmeng & Gapani, Dalal E. & Bi, Shaojie & Dong, Renjie, 2018. "AnMBR as alternative to conventional CSTR to achieve efficient methane production from thermal hydrolyzed sludge at short HRTs," Energy, Elsevier, vol. 159(C), pages 588-598.
    2. Zou, Shuzhen & Wang, Hui & Wang, Xiaojiao & Zhou, Sha & Li, Xue & Feng, Yongzhong, 2016. "Application of experimental design techniques in the optimization of the ultrasonic pretreatment time and enhancement of methane production in anaerobic co-digestion," Applied Energy, Elsevier, vol. 179(C), pages 191-202.
    3. Jiang, Mengmeng & Westerholm, Maria & Qiao, Wei & Wandera, Simon M. & Dong, Renjie, 2020. "High rate anaerobic digestion of swine wastewater in an anaerobic membrane bioreactor," Energy, Elsevier, vol. 193(C).
    4. Mohammed Ali Musa & Syazwani Idrus & Hasfalina Che Man & Nik Norsyahariati Nik Daud, 2018. "Wastewater Treatment and Biogas Recovery Using Anaerobic Membrane Bioreactors (AnMBRs): Strategies and Achievements," Energies, MDPI, vol. 11(7), pages 1-24, June.
    5. Nie, Yulun & Chen, Rong & Tian, Xike & Li, Yu-You, 2017. "Impact of water characteristics on the bioenergy recovery from sewage treatment by anaerobic membrane bioreactor via a comprehensive study on the response of microbial community and methanogenic activ," Energy, Elsevier, vol. 139(C), pages 459-467.
    6. Magdalena Zielińska & Adenike Ojo, 2023. "Anaerobic Membrane Bioreactors (AnMBRs) for Wastewater Treatment: Recovery of Nutrients and Energy, and Management of Fouling," Energies, MDPI, vol. 16(6), pages 1-17, March.
    7. Nixon, J.D., 2016. "Designing and optimising anaerobic digestion systems: A multi-objective non-linear goal programming approach," Energy, Elsevier, vol. 114(C), pages 814-822.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    2. Sood, Aditya & Smakhtin, Vladimir & Eriyagama, Nishadi & Villholth, Karen G. & Liyanage, Nirosha & Wada, Y. & Ebrahim, Girma & Dickens, Chris, 2017. "Global environmental flow information for the sustainable development goals," IWMI Reports 257961, International Water Management Institute.
    3. Luis Garrote, 2017. "Managing Water Resources to Adapt to Climate Change: Facing Uncertainty and Scarcity in a Changing Context," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2951-2963, August.
    4. Correa, Diego F. & Beyer, Hawthorne L. & Possingham, Hugh P. & Fargione, Joseph E. & Hill, Jason D. & Schenk, Peer M., 2021. "Microalgal biofuel production at national scales: Reducing conflicts with agricultural lands and biodiversity within countries," Energy, Elsevier, vol. 215(PA).
    5. Iglesias, Ana & Garrote, Luis, 2015. "Adaptation strategies for agricultural water management under climate change in Europe," Agricultural Water Management, Elsevier, vol. 155(C), pages 113-124.
    6. R. Quentin Grafton, 2017. "Responding to the ‘Wicked Problem’ of Water Insecurity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3023-3041, August.
    7. Unesco Unesco, 2015. "Water for a Sustainable World," Working Papers id:6657, eSocialSciences.
    8. Samuel Asumadu Sarkodie & Maruf Yakubu Ahmed & Phebe Asantewaa Owusu, 2022. "Global adaptation readiness and income mitigate sectoral climate change vulnerabilities," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    9. Yuichiro Yoshida & Han Soo Lee & Bui Huy Trung & Hoang-Dung Tran & Mahrjan Keshlav Lall & Kifayatullah Kakar & Tran Dang Xuan, 2020. "Impacts of Mainstream Hydropower Dams on Fisheries and Agriculture in Lower Mekong Basin," Sustainability, MDPI, vol. 12(6), pages 1-21, March.
    10. Cai, Benan & Long, Chengjun & Du, Qiaochen & Zhang, Wenchao & Hou, Yandong & Wang, Haijun & Cai, Weihua, 2023. "Analysis of a spray flash desalination system driven by low-grade waste heat with different intermittencies," Energy, Elsevier, vol. 277(C).
    11. Yang, Lin & Pang, Shujiang & Wang, Xiaoyan & Du, Yi & Huang, Jieyu & Melching, Charles S., 2021. "Optimal allocation of best management practices based on receiving water capacity constraints," Agricultural Water Management, Elsevier, vol. 258(C).
    12. Antonio J. Castro & Cristina Quintas-Soriano & Jodi Brandt & Carla L. Atkinson & Colden V. Baxter & Morey Burnham & Benis N. Egoh & Marina García-Llorente & Jason P. Julian & Berta Martín-López & Feli, 2018. "Applying Place-Based Social-Ecological Research to Address Water Scarcity: Insights for Future Research," Sustainability, MDPI, vol. 10(5), pages 1-13, May.
    13. Mashhadikhan, Samaneh & Ahmadi, Reyhane & Ebadi Amooghin, Abtin & Sanaeepur, Hamidreza & Aminabhavi, Tejraj M. & Rezakazemi, Mashallah, 2024. "Breaking temperature barrier: Highly thermally heat resistant polymeric membranes for sustainable water and wastewater treatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    14. Qiting Zuo & Yixuan Diao & Lingang Hao & Chunhui Han, 2020. "Comprehensive Evaluation of the Human-Water Harmony Relationship in Countries Along the “Belt and Road”," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4019-4035, October.
    15. Anilkumar, T.T. & Simon, Sishaj P. & Padhy, Narayana Prasad, 2017. "Residential electricity cost minimization model through open well-pico turbine pumped storage system," Applied Energy, Elsevier, vol. 195(C), pages 23-35.
    16. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    17. Xinxin Liu & Xiaosheng Wang & Haiying Guo & Xiaojie An, 2021. "Benefit Allocation in Shared Water-Saving Management Contract Projects Based on Modified Expected Shapley Value," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 39-62, January.
    18. Christian Franco-Crespo & Jose Maria Sumpsi Viñas, 2017. "The Impact of Pricing Policies on Irrigation Water for Agro-Food Farms in Ecuador," Sustainability, MDPI, vol. 9(9), pages 1-18, August.
    19. Yiwen Chiu & Yi Yang & Cody Morse, 2022. "Quantifying carbon footprint for ecological river restoration," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 952-970, January.
    20. Stella Tsani & Phoebe Koundouri & Ebun Akinsete, 2020. "Resource management and sustainable development: A review of the European water policies in accordance with the United Nations' Sustainable Development Goals," DEOS Working Papers 2036, Athens University of Economics and Business.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:98:y:2016:i:c:p:146-154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.