IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v94y2016icp524-532.html
   My bibliography  Save this article

Self-ignition and reaction promotion of H2 with CO2/O2 in Pt-Coated γ-Al2O3 bead reactor

Author

Listed:
  • Wu, Chih-Yung
  • Yang, Shou Yin
  • Hsu, Tien-Chiu
  • Chen, Kun-Ho

Abstract

This paper presents an experimental study on the self-ignition of H2 under different oxidation conditions and to explore how H2 assists CO oxidation in a CO2-diluted stoichiometric stream via a catalytic reactor filled with lab-made catalyst. We characterize the light-off process by measuring the temperature time profile and radial temperature distribution at the reactor exit, the axial temperature distribution in the reactor, and the average reaction temperature for various fuel quantities under different oxidation conditions. The results show that hydrogen self-ignites in a stream of excess air, N2-, and CO2-diluted stoichiometric O2 without additional reactant preheating. However, self-ignition cannot be initiated if the fuel contains CO. The hydrogen mixed with CO2-diluted stoichiometric O2 can be used in the preheating of the catalytic reactor. After the temperature stabilizes, CO or syngas can be added and oxidized in the CO2-diluted stoichiometric O2 stream. However, because the volume fraction of CO is larger than that of H2 in the reactant stream, oxidation cannot be sustained in the present reactor. Moreover, the conversion ratio decreases as the volume fraction of hydrogen in the reactant mixtures increases in the cases of hydrogen oxidation with inert-diluted stoichiometric oxygen.

Suggested Citation

  • Wu, Chih-Yung & Yang, Shou Yin & Hsu, Tien-Chiu & Chen, Kun-Ho, 2016. "Self-ignition and reaction promotion of H2 with CO2/O2 in Pt-Coated γ-Al2O3 bead reactor," Energy, Elsevier, vol. 94(C), pages 524-532.
  • Handle: RePEc:eee:energy:v:94:y:2016:i:c:p:524-532
    DOI: 10.1016/j.energy.2015.11.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215015431
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.11.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bridgwater, A. V. & Peacocke, G. V. C., 2000. "Fast pyrolysis processes for biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(1), pages 1-73, March.
    2. Yang, S.I. & Hsu, T.C. & Wu, C.Y. & Chen, K.H. & Hsu, Y.L. & Li, Y.H., 2014. "Application of biomass fast pyrolysis part II: The effects that bio-pyrolysis oil has on the performance of diesel engines," Energy, Elsevier, vol. 66(C), pages 172-180.
    3. Valero, Antonio & Usón, Sergio, 2006. "Oxy-co-gasification of coal and biomass in an integrated gasification combined cycle (IGCC) power plant," Energy, Elsevier, vol. 31(10), pages 1643-1655.
    4. Yang, S.I. & Wu, M.S. & Wu, C.Y., 2014. "Application of biomass fast pyrolysis part I: Pyrolysis characteristics and products," Energy, Elsevier, vol. 66(C), pages 162-171.
    5. Irfan, Muhammad F. & Usman, Muhammad R. & Kusakabe, K., 2011. "Coal gasification in CO2 atmosphere and its kinetics since 1948: A brief review," Energy, Elsevier, vol. 36(1), pages 12-40.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sellin, Noeli & Krohl, Diego Ricardo & Marangoni, Cintia & Souza, Ozair, 2016. "Oxidative fast pyrolysis of banana leaves in fluidized bed reactor," Renewable Energy, Elsevier, vol. 96(PA), pages 56-64.
    2. Mushtaq, Faisal & Mat, Ramli & Ani, Farid Nasir, 2014. "A review on microwave assisted pyrolysis of coal and biomass for fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 555-574.
    3. Chen, Wei-Hsin & Lin, Bo-Jhih, 2016. "Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres," Energy, Elsevier, vol. 94(C), pages 569-578.
    4. Chaiwatanodom, Paphonwit & Vivanpatarakij, Supawat & Assabumrungrat, Suttichai, 2014. "Thermodynamic analysis of biomass gasification with CO2 recycle for synthesis gas production," Applied Energy, Elsevier, vol. 114(C), pages 10-17.
    5. Yang, S.I. & Wu, M.S. & Hsu, T.C., 2017. "Experimental and numerical simulation study of oxycombustion of fast pyrolysis bio-oil from lignocellulosic biomass," Energy, Elsevier, vol. 126(C), pages 854-867.
    6. Emami Taba, Leila & Irfan, Muhammad Faisal & Wan Daud, Wan Ashri Mohd & Chakrabarti, Mohammed Harun, 2012. "The effect of temperature on various parameters in coal, biomass and CO-gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5584-5596.
    7. Ming, Zi-Qiang & Liu, Yun-Quan & Ye, Yue-Yuan & Li, Shui-Rong & Zhao, Ying-Ru & Wang, Duo, 2016. "Study of a new combined method for pre-extraction of essential oils and catalytic fast pyrolysis of pine sawdust," Energy, Elsevier, vol. 116(P1), pages 558-566.
    8. Irfan, Muhammad Faisal & Arami-Niya, Arash & Chakrabarti, Mohammed Harun & Wan Daud, Wan Mohd. Ashri & Usman, Muhammad Rashid, 2012. "Kinetics of gasification of coal, biomass and their blends in air (N2/O2) and different oxy-fuel (O2/CO2) atmospheres," Energy, Elsevier, vol. 37(1), pages 665-672.
    9. Chen, Guan-Bang & Li, Yueh-Heng & Chen, Guan-Lin & Wu, Wen-Teng, 2017. "Effects of catalysts on pyrolysis of castor meal," Energy, Elsevier, vol. 119(C), pages 1-9.
    10. Wu, M.S. & Yang, S.I., 2016. "Combustion characteristics of multi-component cedar bio-oil/kerosene droplet," Energy, Elsevier, vol. 113(C), pages 788-795.
    11. Yang, S.I. & Wu, M.S. & Hsu, T.C., 2017. "Spray combustion characteristics of kerosene/bio-oil part I: Experimental study," Energy, Elsevier, vol. 119(C), pages 26-36.
    12. Lin, Bo-Jhih & Chen, Wei-Hsin & Hsieh, Tzu-Hsien & Ong, Hwai Chyuan & Show, Pau Loke & Naqvi, Salman Raza, 2019. "Oxidative reaction interaction and synergistic index of emulsified pyrolysis bio-oil/diesel fuels," Renewable Energy, Elsevier, vol. 136(C), pages 223-234.
    13. Yang, S.I. & Hsu, T.C. & Wu, M.S., 2016. "Spray combustion characteristics of kerosene/bio-oil part II: Numerical study," Energy, Elsevier, vol. 115(P1), pages 458-467.
    14. Rozzeta Dolah & Rohit Karnik & Halimaton Hamdan, 2021. "A Comprehensive Review on Biofuels from Oil Palm Empty Bunch (EFB): Current Status, Potential, Barriers and Way Forward," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
    15. Yang, S.I. & Wu, M.S., 2017. "The droplet combustion and thermal characteristics of pinewood bio-oil from slow pyrolysis," Energy, Elsevier, vol. 141(C), pages 2377-2386.
    16. Lee, Sung-Wook & Park, Jong-Soo & Lee, Chun-Boo & Lee, Dong-Wook & Kim, Hakjoo & Ra, Ho Won & Kim, Sung-Hyun & Ryi, Shin-Kun, 2014. "H2 recovery and CO2 capture after water–gas shift reactor using synthesis gas from coal gasification," Energy, Elsevier, vol. 66(C), pages 635-642.
    17. Ján Kačur & Marek Laciak & Milan Durdán & Patrik Flegner, 2023. "Investigation of Underground Coal Gasification in Laboratory Conditions: A Review of Recent Research," Energies, MDPI, vol. 16(17), pages 1-55, August.
    18. Im-orb, Karittha & Simasatitkul, Lida & Arpornwichanop, Amornchai, 2016. "Techno-economic analysis of the biomass gasification and Fischer–Tropsch integrated process with off-gas recirculation," Energy, Elsevier, vol. 94(C), pages 483-496.
    19. Smoliński, A. & Howaniec, N. & Stańczyk, K., 2011. "A comparative experimental study of biomass, lignite and hard coal steam gasification," Renewable Energy, Elsevier, vol. 36(6), pages 1836-1842.
    20. Damartzis, T. & Zabaniotou, A., 2011. "Thermochemical conversion of biomass to second generation biofuels through integrated process design--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 366-378, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:94:y:2016:i:c:p:524-532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.