IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v91y2015icp782-798.html
   My bibliography  Save this article

Evaluation on the gas production potential of different lithological hydrate accumulations in marine environment

Author

Listed:
  • Huang, Li
  • Su, Zheng
  • Wu, Neng-You

Abstract

In this work, the marine hydrate deposits were classified into CHR (clay reservoir), SIHR (siltstone reservoir) and SHR (sandstone reservoir) according to the grain sizes of the sediments. Based on field measurements and proper estimations in Shenhu area, the gas production potentials of these different lithological hydrate reservoirs were numerically studied through Tough + Hydrate. The simulation results reveal that SHR can provide the most desirable gas production potential with the following superior features: (a) a burst gas release at initial stage of the production; (b) the highest average gas release rate 1.7 × 103 ST (standard temperature) m3/d; (c) the highest total release gas volume 1.7 × 107 ST m3, (d) the highest gas-to-water volume ratio with an average value of 9.04. However, the evolution of the spatial distributions of the characteristic parameters indicates that the gas production in SHR has met some challengeable problems in both technology and environment aspects. On the other hand, compared with CHR, SIHR shows a higher gas release rate and cumulative volume but a worse gas-to-water volume ratio during the entire production period. In addition, the evolution of the salinity spatial distribution indicates an unsatisfactory impact on the environment in the later stage of production for SIHR.

Suggested Citation

  • Huang, Li & Su, Zheng & Wu, Neng-You, 2015. "Evaluation on the gas production potential of different lithological hydrate accumulations in marine environment," Energy, Elsevier, vol. 91(C), pages 782-798.
  • Handle: RePEc:eee:energy:v:91:y:2015:i:c:p:782-798
    DOI: 10.1016/j.energy.2015.08.092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215011688
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.08.092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jill Marcelle-De Silva & Richard Dawe, 2011. "Towards Commercial Gas Production from Hydrate Deposits," Energies, MDPI, vol. 4(2), pages 1-24, January.
    2. Bhade, Piyush & Phirani, Jyoti, 2015. "Gas production from layered methane hydrate reservoirs," Energy, Elsevier, vol. 82(C), pages 686-696.
    3. Jiang, Xingxing & Li, Shuxia & Zhang, Lina, 2012. "Sensitivity analysis of gas production from Class I hydrate reservoir by depressurization," Energy, Elsevier, vol. 39(1), pages 281-285.
    4. Li, Xiao-Sen & Yang, Bo & Zhang, Yu & Li, Gang & Duan, Li-Ping & Wang, Yi & Chen, Zhao-Yang & Huang, Ning-Sheng & Wu, Hui-Jie, 2012. "Experimental investigation into gas production from methane hydrate in sediment by depressurization in a novel pilot-scale hydrate simulator," Applied Energy, Elsevier, vol. 93(C), pages 722-732.
    5. Xu, Chun-Gang & Cai, Jing & Lin, Fu-hua & Chen, Zhao-Yang & Li, Xiao-Sen, 2015. "Raman analysis on methane production from natural gas hydrate by carbon dioxide–methane replacement," Energy, Elsevier, vol. 79(C), pages 111-116.
    6. Yuan, Qing & Sun, Chang-Yu & Yang, Xin & Ma, Ping-Chuan & Ma, Zheng-Wei & Liu, Bei & Ma, Qing-Lan & Yang, Lan-Ying & Chen, Guang-Jin, 2012. "Recovery of methane from hydrate reservoir with gaseous carbon dioxide using a three-dimensional middle-size reactor," Energy, Elsevier, vol. 40(1), pages 47-58.
    7. Zheng Su & Yuncheng Cao & Nengyou Wu & Yong He, 2011. "Numerical Analysis on Gas Production Efficiency from Hydrate Deposits by Thermal Stimulation: Application to the Shenhu Area, South China Sea," Energies, MDPI, vol. 4(2), pages 1-20, February.
    8. Zhao, Jiafei & Yu, Tao & Song, Yongchen & Liu, Di & Liu, Weiguo & Liu, Yu & Yang, Mingjun & Ruan, Xuke & Li, Yanghui, 2013. "Numerical simulation of gas production from hydrate deposits using a single vertical well by depressurization in the Qilian Mountain permafrost, Qinghai-Tibet Plateau, China," Energy, Elsevier, vol. 52(C), pages 308-319.
    9. Zhao, Jiafei & Zhu, Zihao & Song, Yongchen & Liu, Weiguo & Zhang, Yi & Wang, Dayong, 2015. "Analyzing the process of gas production for natural gas hydrate using depressurization," Applied Energy, Elsevier, vol. 142(C), pages 125-134.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Qilin & Wang, Ziming & Li, Peng & Song, Yongchen & Wang, Dayong, 2022. "Numerical modeling of coupled behavior of gas production and mechanical deformation of gas hydrate reservoir in Shenhu area, South China Sea: Enlightenments for field monitoring and model verification," Energy, Elsevier, vol. 254(PA).
    2. Huang, Li & Yin, Zhenyuan & Linga, Praveen & Veluswamy, Hari Prakash & Liu, Changling & Chen, Qiang & Hu, Gaowei & Sun, Jianye & Wu, Nengyou, 2022. "Experimental investigation on the production performance from oceanic hydrate reservoirs with different buried depths," Energy, Elsevier, vol. 242(C).
    3. Zhao, Qi & Li, Xiao-Sen & Chen, Zhao-Yang & Xia, Zhi-Ming & Xiao, Chang-Wen, 2024. "Numerical investigation of production characteristics and interlayer interference during co-production of natural gas hydrate and shallow gas reservoir," Applied Energy, Elsevier, vol. 354(PA).
    4. Sun, Yi-Fei & Zhong, Jin-Rong & Chen, Guang-Jin & Cao, Bo-Jian & Li, Rui & Chen, Dao-Yi, 2021. "A new approach to efficient and safe gas production from unsealed marine hydrate deposits," Applied Energy, Elsevier, vol. 282(PB).
    5. Yu, Tao & Guan, Guoqing & Wang, Dayong & Song, Yongchen & Abudula, Abuliti, 2021. "Numerical investigation on the long-term gas production behavior at the 2017 Shenhu methane hydrate production site," Applied Energy, Elsevier, vol. 285(C).
    6. Yang, Mingjun & Zheng, Jia-nan & Gao, Yi & Ma, Zhanquan & Lv, Xin & Song, Yongchen, 2019. "Dissociation characteristics of methane hydrates in South China Sea sediments by depressurization," Applied Energy, Elsevier, vol. 243(C), pages 266-273.
    7. Shao, Yazhou & Yang, Longbin & Zhang, Qun & Wang, Shidong & Wang, Kunfang & Xu, Runzhang, 2020. "Numerical study on gas production from methane hydrate reservoir by depressurization in a reactor," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    8. Feng, Yongchang & Chen, Lin & Suzuki, Anna & Kogawa, Takuma & Okajima, Junnosuke & Komiya, Atsuki & Maruyama, Shigenao, 2019. "Numerical analysis of gas production from layered methane hydrate reservoirs by depressurization," Energy, Elsevier, vol. 166(C), pages 1106-1119.
    9. Terzariol, M. & Goldsztein, G. & Santamarina, J.C., 2017. "Maximum recoverable gas from hydrate bearing sediments by depressurization," Energy, Elsevier, vol. 141(C), pages 1622-1628.
    10. Zhong, Xiuping & Pan, Dongbin & Zhu, Ying & Wang, Yafei & Zhai, Lianghao & Li, Xitong & Tu, Guigang & Chen, Chen, 2021. "Fracture network stimulation effect on hydrate development by depressurization combined with thermal stimulation using injection-production well patterns," Energy, Elsevier, vol. 228(C).
    11. Yu, Tao & Guan, Guoqing & Abudula, Abuliti & Yoshida, Akihiro & Wang, Dayong & Song, Yongchen, 2019. "Gas recovery enhancement from methane hydrate reservoir in the Nankai Trough using vertical wells," Energy, Elsevier, vol. 166(C), pages 834-844.
    12. Li, Nan & Zhang, Jie & Xia, Ming-Ji & Sun, Chang-Yu & Liu, Yan-Sheng & Chen, Guang-Jin, 2021. "Gas production from heterogeneous hydrate-bearing sediments by depressurization in a large-scale simulator," Energy, Elsevier, vol. 234(C).
    13. Feng, Yongchang & Chen, Lin & Kanda, Yuki & Suzuki, Anna & Komiya, Atsuki & Maruyama, Shigenao, 2021. "Numerical analysis of gas production from large-scale methane hydrate sediments with fractures," Energy, Elsevier, vol. 236(C).
    14. Lu, Nu & Hou, Jian & Liu, Yongge & Barrufet, Maria A. & Bai, Yajie & Ji, Yunkai & Zhao, Ermeng & Chen, Weiqing & Zhou, Kang, 2019. "Revised inflow performance relationship for productivity prediction and energy evaluation based on stage characteristics of Class III methane hydrate deposits," Energy, Elsevier, vol. 189(C).
    15. Yu, Tao & Guan, Guoqing & Abudula, Abuliti, 2019. "Production performance and numerical investigation of the 2017 offshore methane hydrate production test in the Nankai Trough of Japan," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    16. Shen, Zhicong & Wang, Dong & Zheng, Tianyuan, 2023. "Numerical simulations of the synthetic processes and consequences of secondary hydrates during depressurization of a horizontal well in the hydrates production," Energy, Elsevier, vol. 263(PB).
    17. Zhu, Huixing & Xu, Tianfu & Yuan, Yilong & Xia, Yingli & Xin, Xin, 2020. "Numerical investigation of the natural gas hydrate production tests in the Nankai Trough by incorporating sand migration," Applied Energy, Elsevier, vol. 275(C).
    18. Huang, Li & Yin, Zhenyuan & Wan, Yizhao & Sun, Jianye & Wu, Nengyou & Veluswamy, Hari Prakash, 2020. "Evaluation and comparison of gas production potential of the typical four gas hydrate deposits in Shenhu area, South China sea," Energy, Elsevier, vol. 204(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choi, Wonjung & Lee, Yohan & Mok, Junghoon & Seo, Yongwon, 2020. "Influence of feed gas composition on structural transformation and guest exchange behaviors in sH hydrate – Flue gas replacement for energy recovery and CO2 sequestration," Energy, Elsevier, vol. 207(C).
    2. Yu, Tao & Guan, Guoqing & Abudula, Abuliti & Wang, Dayong & Song, Yongchen, 2021. "Numerical evaluation of free gas accumulation behavior in a reservoir during methane hydrate production using a multiple-well system," Energy, Elsevier, vol. 218(C).
    3. Yun-Pei Liang & Xiao-Sen Li & Bo Li, 2015. "Assessment of Gas Production Potential from Hydrate Reservoir in Qilian Mountain Permafrost Using Five-Spot Horizontal Well System," Energies, MDPI, vol. 8(10), pages 1-22, September.
    4. Li, Gang & Li, Xiao-Sen & Li, Bo & Wang, Yi, 2014. "Methane hydrate dissociation using inverted five-spot water flooding method in cubic hydrate simulator," Energy, Elsevier, vol. 64(C), pages 298-306.
    5. Bhade, Piyush & Phirani, Jyoti, 2015. "Gas production from layered methane hydrate reservoirs," Energy, Elsevier, vol. 82(C), pages 686-696.
    6. Yu, Tao & Guan, Guoqing & Abudula, Abuliti & Yoshida, Akihiro & Wang, Dayong & Song, Yongchen, 2019. "Gas recovery enhancement from methane hydrate reservoir in the Nankai Trough using vertical wells," Energy, Elsevier, vol. 166(C), pages 834-844.
    7. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen & Li, Gang & Zhang, Yu, 2015. "Three dimensional experimental and numerical investigations into hydrate dissociation in sandy reservoir with dual horizontal wells," Energy, Elsevier, vol. 90(P1), pages 836-845.
    8. Feng, Yongchang & Chen, Lin & Suzuki, Anna & Kogawa, Takuma & Okajima, Junnosuke & Komiya, Atsuki & Maruyama, Shigenao, 2019. "Numerical analysis of gas production from layered methane hydrate reservoirs by depressurization," Energy, Elsevier, vol. 166(C), pages 1106-1119.
    9. Li, Xiao-Sen & Xu, Chun-Gang & Zhang, Yu & Ruan, Xu-Ke & Li, Gang & Wang, Yi, 2016. "Investigation into gas production from natural gas hydrate: A review," Applied Energy, Elsevier, vol. 172(C), pages 286-322.
    10. Yun-Pei Liang & Shu Liu & Qing-Cui Wan & Bo Li & Hang Liu & Xiao Han, 2018. "Comparison and Optimization of Methane Hydrate Production Process Using Different Methods in a Single Vertical Well," Energies, MDPI, vol. 12(1), pages 1-21, December.
    11. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu & Li, Gang, 2016. "Large scale experimental evaluation to methane hydrate dissociation below quadruple point in sandy sediment," Applied Energy, Elsevier, vol. 162(C), pages 372-381.
    12. Zheng, Ruyi & Li, Shuxia & Li, Qingping & Li, Xiaoli, 2018. "Study on the relations between controlling mechanisms and dissociation front of gas hydrate reservoirs," Applied Energy, Elsevier, vol. 215(C), pages 405-415.
    13. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen & Li, Gang & Zhang, Yu & Chen, Zhao-Yang, 2015. "Effect of horizontal and vertical well patterns on methane hydrate dissociation behaviors in pilot-scale hydrate simulator," Applied Energy, Elsevier, vol. 145(C), pages 69-79.
    14. Shao, Yazhou & Yang, Longbin & Zhang, Qun & Wang, Shidong & Wang, Kunfang & Xu, Runzhang, 2020. "Numerical study on gas production from methane hydrate reservoir by depressurization in a reactor," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    15. Jiang, Wei & Kan, Jingyu & Dong, Baocan & Li, Xingxun & Wang, Xiaohui & Deng, Chun & Liu, Bei & Li, Qingping & Sun, Changyu & Chen, Guangjin, 2023. "Natural gas hydrate exploitation and recovered natural gas liquefaction driven by wind power: Process modelling and energy performance evaluation," Energy, Elsevier, vol. 282(C).
    16. Kan, Jing-Yu & Sun, Yi-Fei & Dong, Bao-Can & Yuan, Qing & Liu, Bei & Sun, Chang-Yu & Chen, Guang-Jin, 2021. "Numerical simulation of gas production from permafrost hydrate deposits enhanced with CO2/N2 injection," Energy, Elsevier, vol. 221(C).
    17. Chong, Zheng Rong & Yang, She Hern Bryan & Babu, Ponnivalavan & Linga, Praveen & Li, Xiao-Sen, 2016. "Review of natural gas hydrates as an energy resource: Prospects and challenges," Applied Energy, Elsevier, vol. 162(C), pages 1633-1652.
    18. Wang, Bin & Fan, Zhen & Zhao, Jiafei & Lv, Xin & Pang, Weixin & Li, Qingping, 2018. "Influence of intrinsic permeability of reservoir rocks on gas recovery from hydrate deposits via a combined depressurization and thermal stimulation approach," Applied Energy, Elsevier, vol. 229(C), pages 858-871.
    19. Song, Rui & Sun, Shuyu & Liu, Jianjun & Yang, Chunhe, 2021. "Pore scale modeling on dissociation and transportation of methane hydrate in porous sediments," Energy, Elsevier, vol. 237(C).
    20. Song, Yongchen & Cheng, Chuanxiao & Zhao, Jiafei & Zhu, Zihao & Liu, Weiguo & Yang, Mingjun & Xue, Kaihua, 2015. "Evaluation of gas production from methane hydrates using depressurization, thermal stimulation and combined methods," Applied Energy, Elsevier, vol. 145(C), pages 265-277.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:91:y:2015:i:c:p:782-798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.