IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v90y2015ip1p917-925.html
   My bibliography  Save this article

Numerical simulation and wind tunnel experiments on wind-induced natural ventilation in isolated building with patio

Author

Listed:
  • Driss, Slah
  • Driss, Zied
  • Kallel Kammoun, Imen

Abstract

This paper deals with studying of the aerodynamics characteristics in a residential building with a patio system connecting the inside with the outside. The numerical simulation is based on the resolution of the Navier–Stokes equations in conjunction with the standard k-ε turbulence model. These equations are solved by a finite-volume discretization method. The comparison between our numerical and experimental results developed using a wind tunnel shows a good agreement and confirms the validity of the numerical method. This proposed design presents an outlining environment suitable building in Tunisia.

Suggested Citation

  • Driss, Slah & Driss, Zied & Kallel Kammoun, Imen, 2015. "Numerical simulation and wind tunnel experiments on wind-induced natural ventilation in isolated building with patio," Energy, Elsevier, vol. 90(P1), pages 917-925.
  • Handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:917-925
    DOI: 10.1016/j.energy.2015.07.128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215010233
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.07.128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Driss, Zied & Mlayeh, Olfa & Driss, Dorra & Maaloul, Makram & Abid, Mohamed Salah, 2014. "Numerical simulation and experimental validation of the turbulent flow around a small incurved Savonius wind rotor," Energy, Elsevier, vol. 74(C), pages 506-517.
    2. Chan, A.L.S., 2015. "Investigation on the appropriate floor level of residential building for installing balcony, from a view point of energy and environmental performance. A case study in subtropical Hong Kong," Energy, Elsevier, vol. 85(C), pages 620-634.
    3. Al-Sallal, Khaled A. & Al-Rais, Laila & Dalmouk, Maitha Bin, 2013. "Designing a sustainable house in the desert of Abu Dhabi," Renewable Energy, Elsevier, vol. 49(C), pages 80-84.
    4. Frikha, Sobhi & Driss, Zied & Hagui, Mohamed Aymen, 2015. "Computational study of the diffuser angle effect in the design of a waste heat recovery system for oil field cabins," Energy, Elsevier, vol. 84(C), pages 219-238.
    5. Ammar, M. & Chtourou, W. & Driss, Z. & Abid, M.S., 2011. "Numerical investigation of turbulent flow generated in baffled stirred vessels equipped with three different turbines in one and two-stage system," Energy, Elsevier, vol. 36(8), pages 5081-5093.
    6. Hedegaard, Karsten & Balyk, Olexandr, 2013. "Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks," Energy, Elsevier, vol. 63(C), pages 356-365.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gil-Baez, Maite & Barrios-Padura, Ángela & Molina-Huelva, Marta & Chacartegui, R., 2017. "Natural ventilation systems in 21st-century for near zero energy school buildings," Energy, Elsevier, vol. 137(C), pages 1186-1200.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Driss, Zied & Mlayeh, Olfa & Driss, Slah & Driss, Dorra & Maaloul, Makram & Abid, Mohamed Salah, 2015. "Study of the bucket design effect on the turbulent flow around unconventional Savonius wind rotors," Energy, Elsevier, vol. 89(C), pages 708-729.
    2. Driss, Zied & Mlayeh, Olfa & Driss, Slah & Maaloul, Makram & Abid, Mohamed Salah, 2016. "Study of the incidence angle effect on the aerodynamic structure characteristics of an incurved Savonius wind rotor placed in a wind tunnel," Energy, Elsevier, vol. 113(C), pages 894-908.
    3. Frikha, Sobhi & Driss, Zied & Ayadi, Emna & Masmoudi, Zied & Abid, Mohamed Salah, 2016. "Numerical and experimental characterization of multi-stage Savonius rotors," Energy, Elsevier, vol. 114(C), pages 382-404.
    4. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    5. Baoshou Zhang & Baowei Song & Zhaoyong Mao & Wenlong Tian & Boyang Li & Bo Li, 2017. "A Novel Parametric Modeling Method and Optimal Design for Savonius Wind Turbines," Energies, MDPI, vol. 10(3), pages 1-20, March.
    6. Felten, Björn & Weber, Christoph, 2018. "The value(s) of flexible heat pumps – Assessment of technical and economic conditions," Applied Energy, Elsevier, vol. 228(C), pages 1292-1319.
    7. Bergaentzle, Claire & Gunkel, Philipp Andreas, 2022. "Cross-sector flexibility, storage investment and the integration of renewables: Capturing the impacts of grid tariffs," Energy Policy, Elsevier, vol. 164(C).
    8. Schill, Wolf-Peter & Zerrahn, Alexander, 2020. "Flexible electricity use for heating in markets with renewable energy," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 266.
    9. Rafaa Saaidia & Mohamed Ali Jemni & Mohamed Salah Abid, 2017. "Simulation and Empirical Studies of the Commercial SI Engine Performance and Its Emission Levels When Running on a CNG and Hydrogen Blend," Energies, MDPI, vol. 11(1), pages 1-22, December.
    10. Tian, Wenlong & Song, Baowei & Mao, Zhaoyong, 2020. "Numerical investigation of wind turbines and turbine arrays on highways," Renewable Energy, Elsevier, vol. 147(P1), pages 384-398.
    11. Deda Altan, Burcin & Altan, Gurkan & Kovan, Volkan, 2016. "Investigation of 3D printed Savonius rotor performance," Renewable Energy, Elsevier, vol. 99(C), pages 584-591.
    12. Katz, Jonas & Andersen, Frits Møller & Morthorst, Poul Erik, 2016. "Load-shift incentives for household demand response: Evaluation of hourly dynamic pricing and rebate schemes in a wind-based electricity system," Energy, Elsevier, vol. 115(P3), pages 1602-1616.
    13. Casini, Marco, 2020. "A positive energy building for the Middle East climate: ReStart4Smart Solar House at Solar Decathlon Middle East 2018," Renewable Energy, Elsevier, vol. 159(C), pages 1269-1296.
    14. Almansoori, Ali & Betancourt-Torcat, Alberto, 2015. "Design optimization model for the integration of renewable and nuclear energy in the United Arab Emirates’ power system," Applied Energy, Elsevier, vol. 148(C), pages 234-251.
    15. Georges, Emeline & Cornélusse, Bertrand & Ernst, Damien & Lemort, Vincent & Mathieu, Sébastien, 2017. "Residential heat pump as flexible load for direct control service with parametrized duration and rebound effect," Applied Energy, Elsevier, vol. 187(C), pages 140-153.
    16. Bjoern Felten & Jessica Raasch & Christoph Weber, 2017. "Photovoltaics and Heat Pumps - Limitations of Local Pricing Mechanisms," EWL Working Papers 1702, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Feb 2017.
    17. Volkova, A. & Koduvere, H. & Pieper, H., 2022. "Large-scale heat pumps for district heating systems in the Baltics: Potential and impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    18. Ding, Yan & Lyu, Yacong & Lu, Shilei & Wang, Ran, 2022. "Load shifting potential assessment of building thermal storage performance for building design," Energy, Elsevier, vol. 243(C).
    19. Zeyen, Elisabeth & Hagenmeyer, Veit & Brown, Tom, 2021. "Mitigating heat demand peaks in buildings in a highly renewable European energy system," Energy, Elsevier, vol. 231(C).
    20. Khairil Anwar & Syukri Himran & Luther Sule & Nasruddin Azis, 2018. "Numerical Investigation Of Modified Savonius Wind Turbine with Various Straight Blade Angle," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 41(3), pages 38-42, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:917-925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.