IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v85y2015icp620-634.html
   My bibliography  Save this article

Investigation on the appropriate floor level of residential building for installing balcony, from a view point of energy and environmental performance. A case study in subtropical Hong Kong

Author

Listed:
  • Chan, A.L.S.

Abstract

In a residential building, a balcony of an upper floor can act as an overhang; and provide solar shading and reduction in electricity consumption of air-conditioner (A/C) for a flat on the underneath floor. However, some residential flats located on the lower levels may receive substantial self-shading effect from some adjacent flats in the same building block, leading to an insignificant shading effect from a balcony. As there is substantial amount of energy consumed and pollutant generated during the production and disposal of a balcony, it is vital to investigate the energy and environmental performance of residential flats installed with balconies at various floor levels. The objective of this study is to investigate an appropriate floor level of a residential building above which balconies should be incorporated. A 21-story residential building was modeled using EnergyPlus. Simulation results indicated that, for a west-facing flat, only the flats located on 15/F to 20/F can give acceptable environmental payback periods, ranging from 58.3 years to 40.7 years, i.e. within the lifespan (60 years) of a building. The corresponding annual savings in A/C consumption range from 234.9 MJ (2.60%) to 336.7 MJ (3.57%). The research methodology and findings are presented in this paper.

Suggested Citation

  • Chan, A.L.S., 2015. "Investigation on the appropriate floor level of residential building for installing balcony, from a view point of energy and environmental performance. A case study in subtropical Hong Kong," Energy, Elsevier, vol. 85(C), pages 620-634.
  • Handle: RePEc:eee:energy:v:85:y:2015:i:c:p:620-634
    DOI: 10.1016/j.energy.2015.04.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421500417X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.04.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chan, A.L.S. & Chow, T.T., 2014. "Thermal performance of air-conditioned office buildings constructed with inclined walls in different climates in China," Applied Energy, Elsevier, vol. 114(C), pages 45-57.
    2. Florides, G. A. & Tassou, S. A. & Kalogirou, S. A. & Wrobel, L. C., 2002. "Measures used to lower building energy consumption and their cost effectiveness," Applied Energy, Elsevier, vol. 73(3-4), pages 299-328, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Driss, Slah & Driss, Zied & Kallel Kammoun, Imen, 2015. "Numerical simulation and wind tunnel experiments on wind-induced natural ventilation in isolated building with patio," Energy, Elsevier, vol. 90(P1), pages 917-925.
    2. Pan, Wei & Qin, Hao & Zhao, Yisong, 2017. "Challenges for energy and carbon modeling of high-rise buildings: The case of public housing in Hong Kong," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 208-218.
    3. Premrov, Miroslav & Žegarac Leskovar, Vesna & Mihalič, Klara, 2016. "Influence of the building shape on the energy performance of timber-glass buildings in different climatic conditions," Energy, Elsevier, vol. 108(C), pages 201-211.
    4. Reyna, Janet L. & Chester, Mikhail V. & Rey, Sergio J., 2016. "Defining geographical boundaries with social and technical variables to improve urban energy assessments," Energy, Elsevier, vol. 112(C), pages 742-754.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Villa-Arrieta, Manuel & Sumper, Andreas, 2018. "A model for an economic evaluation of energy systems using TRNSYS," Applied Energy, Elsevier, vol. 215(C), pages 765-777.
    2. Jian Yao, 2014. "A Multi-Objective (Energy, Economic and Environmental Performance) Life Cycle Analysis for Better Building Design," Sustainability, MDPI, vol. 6(2), pages 1-13, January.
    3. Leccese, Francesco & Salvadori, Giacomo & Asdrubali, Francesco & Gori, Paola, 2018. "Passive thermal behaviour of buildings: Performance of external multi-layered walls and influence of internal walls," Applied Energy, Elsevier, vol. 225(C), pages 1078-1089.
    4. Sadineni, Suresh B. & France, Todd M. & Boehm, Robert F., 2011. "Economic feasibility of energy efficiency measures in residential buildings," Renewable Energy, Elsevier, vol. 36(11), pages 2925-2931.
    5. Bessa, Vanessa M.T. & Prado, Racine T.A., 2015. "Reduction of carbon dioxide emissions by solar water heating systems and passive technologies in social housing," Energy Policy, Elsevier, vol. 83(C), pages 138-150.
    6. Oropeza-Perez, Ivan & Østergaard, Poul Alberg, 2014. "Potential of natural ventilation in temperate countries – A case study of Denmark," Applied Energy, Elsevier, vol. 114(C), pages 520-530.
    7. He, Yueer & Liu, Meng & Kvan, Thomas & Peng, Shini, 2017. "An enthalpy-based energy savings estimation method targeting thermal comfort level in naturally ventilated buildings in hot-humid summer zones," Applied Energy, Elsevier, vol. 187(C), pages 717-731.
    8. De Boeck, L. & Verbeke, S. & Audenaert, A. & De Mesmaeker, L., 2015. "Improving the energy performance of residential buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 960-975.
    9. Kharseh, Mohamad & Altorkmany, Lobna & Al-Khawaja, Mohammed & Hassani, Ferri, 2015. "Analysis of the effect of global climate change on ground source heat pump systems in different climate categories," Renewable Energy, Elsevier, vol. 78(C), pages 219-225.
    10. Sadineni, Suresh B. & Madala, Srikanth & Boehm, Robert F., 2011. "Passive building energy savings: A review of building envelope components," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3617-3631.
    11. Jim, C.Y., 2014. "Air-conditioning energy consumption due to green roofs with different building thermal insulation," Applied Energy, Elsevier, vol. 128(C), pages 49-59.
    12. Ascione, Fabrizio & Bianco, Nicola & de’ Rossi, Filippo & Turni, Gianluca & Vanoli, Giuseppe Peter, 2013. "Green roofs in European climates. Are effective solutions for the energy savings in air-conditioning?," Applied Energy, Elsevier, vol. 104(C), pages 845-859.
    13. Ahmad, Irshad, 2010. "Performance of antisolar insulated roof system," Renewable Energy, Elsevier, vol. 35(1), pages 36-41.
    14. Karunathilake, Hirushie & Hewage, Kasun & Sadiq, Rehan, 2018. "Opportunities and challenges in energy demand reduction for Canadian residential sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2005-2016.
    15. Ángel Gómez-Moreno & Pedro José Casanova-Peláez & José Manuel Palomar-Carnicero & Fernando Cruz-Peragón, 2016. "Modeling and Experimental Validation of a Low-Cost Radiation Sensor Based on the Photovoltaic Effect for Building Applications," Energies, MDPI, vol. 9(11), pages 1-16, November.
    16. Balvís, Eduardo & Sampedro, Óscar & Zaragoza, Sonia & Paredes, Angel & Michinel, Humberto, 2016. "A simple model for automatic analysis and diagnosis of environmental thermal comfort in energy efficient buildings," Applied Energy, Elsevier, vol. 177(C), pages 60-70.
    17. Stevanović, Sanja, 2013. "Optimization of passive solar design strategies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 177-196.
    18. Freire, Roberto Zanetti & Mazuroski, Walter & Abadie, Marc Olivier & Mendes, Nathan, 2011. "Capacitive effect on the heat transfer through building glazing systems," Applied Energy, Elsevier, vol. 88(12), pages 4310-4319.
    19. Bulut, Hüsamettin & Aktacir, Mehmet Azmi, 2011. "Determination of free cooling potential: A case study for Istanbul, Turkey," Applied Energy, Elsevier, vol. 88(3), pages 680-689, March.
    20. Brandão de Vasconcelos, Ana & Cabaço, António & Pinheiro, Manuel Duarte & Manso, Armando, 2016. "The impact of building orientation and discount rates on a Portuguese reference building refurbishment decision," Energy Policy, Elsevier, vol. 91(C), pages 329-340.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:85:y:2015:i:c:p:620-634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.