IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v90y2015ip1p889-899.html
   My bibliography  Save this article

Understanding the self-sustained oscillating two-phase flow motion in a closed loop pulsating heat pipe

Author

Listed:
  • Spinato, Giulia
  • Borhani, Navid
  • Thome, John R.

Abstract

In the framework of efficient thermal management schemes, pulsating heat pipes (PHPs) represent a breakthrough solution for passive on-chip two-phase flow cooling of micro-electronics. Unfortunately, the unique coupling of thermodynamics, hydrodynamics and heat transfer, responsible for the self-sustained pulsating two-phase flow in such devices, presents many challenges to the understanding of the underlying physical phenomena which have so far eluded accurate prediction. In this experimental study, the novel time-strip image processing technique was used to investigate the thermo-flow dynamics of a single-turn channel CLPHP (closed loop pulsating heat pipe) charged with R245fa and tested under different operating conditions. The resulting frequency data confirmed the effect of flow pattern, and thus operating conditions, on the oscillating behavior. Dominant frequencies from 1.2 Hz for the oscillating regime to 0.6 Hz for the unidirectional flow circulation regime were measured, whilst wide spectral bands were observed for the unstable circulation regime. In order to analytically assess the observed trends in the spectral behavior, a spring-mass-damper system model was developed for the two-phase flow motion. As well as showing that system stiffness and mass have an effect on the two-phase flow dynamics, further insights into the flow pattern transition mechanism were also gained.

Suggested Citation

  • Spinato, Giulia & Borhani, Navid & Thome, John R., 2015. "Understanding the self-sustained oscillating two-phase flow motion in a closed loop pulsating heat pipe," Energy, Elsevier, vol. 90(P1), pages 889-899.
  • Handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:889-899
    DOI: 10.1016/j.energy.2015.07.119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215010142
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.07.119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shafiee, Shahriar & Topal, Erkan, 2009. "When will fossil fuel reserves be diminished?," Energy Policy, Elsevier, vol. 37(1), pages 181-189, January.
    2. Nine, Md J. & Tanshen, Md. Riyad & Munkhbayar, B. & Chung, Hanshik & Jeong, Hyomin, 2014. "Analysis of pressure fluctuations to evaluate thermal performance of oscillating heat pipe," Energy, Elsevier, vol. 70(C), pages 135-142.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, Hua & Cui, Xiaoyu & Zhu, Yue & Xu, Tianxiao & Sui, Yuan & Sun, Shende, 2016. "Experimental study on a closed-loop pulsating heat pipe (CLPHP) charged with water-based binary zeotropes and the corresponding pure fluids," Energy, Elsevier, vol. 109(C), pages 724-736.
    2. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Alhuyi Nazari, Mohammad & Ahmadi, Mohammad H. & Ghasempour, Roghayeh & Shafii, Mohammad Behshad, 2018. "How to improve the thermal performance of pulsating heat pipes: A review on working fluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 630-638.
    4. Alhuyi Nazari, Mohammad & Ahmadi, Mohammad H. & Ghasempour, Roghayeh & Shafii, Mohammad Behshad & Mahian, Omid & Kalogirou, Soteris & Wongwises, Somchai, 2018. "A review on pulsating heat pipes: From solar to cryogenic applications," Applied Energy, Elsevier, vol. 222(C), pages 475-484.
    5. Chen, Kailun & Meng, Zhaoming & Yan, Changqi & Fan, Guangming & Ding, Tao, 2018. "Experimental study on start-up and steady state characteristics of passive residual heat removal system for 2 MW molten salt reactor," Energy, Elsevier, vol. 147(C), pages 826-838.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Mubarak Al-Qahtani, 2023. "A Comprehensive Review in Microwave Pyrolysis of Biomass, Syngas Production and Utilisation," Energies, MDPI, vol. 16(19), pages 1-16, September.
    2. Jen-Yu Lee & Tien-Thinh Nguyen & Hong-Giang Nguyen & Jen-Yao Lee, 2022. "Towards Predictive Crude Oil Purchase: A Case Study in the USA and Europe," Energies, MDPI, vol. 15(11), pages 1-15, May.
    3. Steve Newbold & Charles Griffiths & Christopher C. Moore & Ann Wolverton & Elizabeth Kopits, 2010. "The "Social Cost of Carbon" Made Simple," NCEE Working Paper Series 201007, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Aug 2010.
    4. Yassir El Karkri & Alexis B. Rey-Boué & Hassan El Moussaoui & Johannes Stöckl & Thomas I. Strasser, 2019. "Improved Control of Grid-connected DFIG-based Wind Turbine using Proportional-Resonant Regulators during Unbalanced Grid," Energies, MDPI, vol. 12(21), pages 1-21, October.
    5. Bodisco, Timothy & Brown, Richard J., 2013. "Inter-cycle variability of in-cylinder pressure parameters in an ethanol fumigated common rail diesel engine," Energy, Elsevier, vol. 52(C), pages 55-65.
    6. Leong, Jun Xing & Daud, Wan Ramli Wan & Ghasemi, Mostafa & Liew, Kien Ben & Ismail, Manal, 2013. "Ion exchange membranes as separators in microbial fuel cells for bioenergy conversion: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 575-587.
    7. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Experimental Validation of Water Flow Glazing: Transient Response in Real Test Rooms," Sustainability, MDPI, vol. 12(14), pages 1-24, July.
    8. Johannes Karlsson & Anders Grauers, 2023. "Agent-Based Investigation of Charger Queues and Utilization of Public Chargers for Electric Long-Haul Trucks," Energies, MDPI, vol. 16(12), pages 1-25, June.
    9. Bellekom, Sandra & Benders, René & Pelgröm, Steef & Moll, Henk, 2012. "Electric cars and wind energy: Two problems, one solution? A study to combine wind energy and electric cars in 2020 in The Netherlands," Energy, Elsevier, vol. 45(1), pages 859-866.
    10. Mohammadzadeh Bina, Saeid & Jalilinasrabady, Saeid & Fujii, Hikari & Pambudi, Nugroho Agung, 2018. "Classification of geothermal resources in Indonesia by applying exergy concept," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 499-506.
    11. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    12. Lee, Jongkeun & Lee, Kwanyong & Sohn, Donghwan & Kim, Young Mo & Park, Ki Young, 2018. "Hydrothermal carbonization of lipid extracted algae for hydrochar production and feasibility of using hydrochar as a solid fuel," Energy, Elsevier, vol. 153(C), pages 913-920.
    13. Lim, Jeng Shiun & Abdul Manan, Zainuddin & Wan Alwi, Sharifah Rafidah & Hashim, Haslenda, 2012. "A review on utilisation of biomass from rice industry as a source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3084-3094.
    14. Jouvet, Pierre-André & Schumacher, Ingmar, 2012. "Learning-by-doing and the costs of a backstop for energy transition and sustainability," Ecological Economics, Elsevier, vol. 73(C), pages 122-132.
    15. Neeraj Sharma & Rajat Agrawal, 2017. "Locating a Wind Energy Project: A Case of a Leading Oil and Gas Producer in India," Vision, , vol. 21(2), pages 172-194, June.
    16. Kunwar, Bidhya & Cheng, H.N. & Chandrashekaran, Sriram R & Sharma, Brajendra K, 2016. "Plastics to fuel: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 421-428.
    17. Jose Loyola-Fuentes & Luca Pietrasanta & Marco Marengo & Francesco Coletti, 2022. "Machine Learning Algorithms for Flow Pattern Classification in Pulsating Heat Pipes," Energies, MDPI, vol. 15(6), pages 1-20, March.
    18. Li, Hao & Zhang, Ji & Liu, Xiaohua & Zhang, Tao, 2022. "Comparative investigation of energy-saving potential and technical economy of rooftop radiative cooling and photovoltaic systems," Applied Energy, Elsevier, vol. 328(C).
    19. Coilín ÓhAiseadha & Gerré Quinn & Ronan Connolly & Michael Connolly & Willie Soon, 2020. "Energy and Climate Policy—An Evaluation of Global Climate Change Expenditure 2011–2018," Energies, MDPI, vol. 13(18), pages 1-49, September.
    20. Deveci, Kaan & Güler, Önder, 2020. "A CMOPSO based multi-objective optimization of renewable energy planning: Case of Turkey," Renewable Energy, Elsevier, vol. 155(C), pages 578-590.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:889-899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.