IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i10p2243-2256.html
   My bibliography  Save this article

Experimental investigation on the relationship between sluice caisson shape of tidal power plant and the water discharge capability

Author

Listed:
  • Lee, Dal Soo
  • Oh, Sang-Ho
  • Yi, Jin-Hak
  • Park, Woo-Sun
  • Cho, Hyu-Sang
  • Kim, Duk-Gu
  • Eom, Hyun-Min
  • Ahn, Suk-Jin

Abstract

The change of water discharge capability of the sluice caisson of tidal power plant according to the change of geometrical shape of the sluice caisson was investigated by performing laboratory experiments. The major design parameters that constitute general shape of the sluice caisson were deduced and a total of 32 different shapes of sluice caisson models were subjected to the hydraulic experiments. For every sluice caisson model, the water discharge capability was estimated with five different flow rates and three different water level conditions. The experiments were carried out in an open channel flume with a great care to measure flow rate and water level accurately, which are key physical quantities in estimating the water discharge capability of the sluice caisson models. By analyzing the experimental results, influence of the respective design parameters on the performance of the sluice caisson was examined and the general guidelines to enhance the water discharge capability were suggested. The discharge coefficient of the best sluice caisson model ranged from 2.3 to 3.1 depending on the experimental conditions, which is far higher than the values that were adopted in the past feasibility studies in Korea.

Suggested Citation

  • Lee, Dal Soo & Oh, Sang-Ho & Yi, Jin-Hak & Park, Woo-Sun & Cho, Hyu-Sang & Kim, Duk-Gu & Eom, Hyun-Min & Ahn, Suk-Jin, 2010. "Experimental investigation on the relationship between sluice caisson shape of tidal power plant and the water discharge capability," Renewable Energy, Elsevier, vol. 35(10), pages 2243-2256.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:10:p:2243-2256
    DOI: 10.1016/j.renene.2010.02.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110000893
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.02.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chaineux, Marie-Claire & Charlier, Roger H., 2008. "Women's tidal power plant Forty candles for Kislaya Guba TPP," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2515-2524, December.
    2. Charlier, Roger H., 2003. "Sustainable co-generation from the tides:: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(3), pages 187-213, June.
    3. Baker, Clive, 1991. "Tidal power," Energy Policy, Elsevier, vol. 19(8), pages 792-797, October.
    4. Charlier, Roger H., 2001. "Ocean alternative energy: The view from China--'small is beautiful'," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 403-409, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Obara, Shin’ya & Kawai, Masahito & Kawae, Osamu & Morizane, Yuta, 2013. "Operational planning of an independent microgrid containing tidal power generators, SOFCs, and photovoltaics," Applied Energy, Elsevier, vol. 102(C), pages 1343-1357.
    2. Luo, Yongyao & Wang, Zhengwei & Liu, Xin & Xiao, Yexiang & Chen, Changkun & Wang, Haoping & Yan, Jianhua, 2015. "Numerical prediction of pressure pulsation for a low head bidirectional tidal bulb turbine," Energy, Elsevier, vol. 89(C), pages 730-738.
    3. Xia, Junqiang & Falconer, Roger A. & Lin, Binliang & Tan, Guangming, 2012. "Estimation of annual energy output from a tidal barrage using two different methods," Applied Energy, Elsevier, vol. 93(C), pages 327-336.
    4. Obara, Shin’ya & Morizane, Yuta & Morel, Jorge, 2013. "Study on method of electricity and heat storage planning based on energy demand and tidal flow velocity forecasts for a tidal microgrid," Applied Energy, Elsevier, vol. 111(C), pages 358-373.
    5. Angeloudis, Athanasios & Kramer, Stephan C. & Avdis, Alexandros & Piggott, Matthew D., 2018. "Optimising tidal range power plant operation," Applied Energy, Elsevier, vol. 212(C), pages 680-690.
    6. Oh, Sang-Ho & Lee, Kwang Soo & Jeong, Weon-Mu, 2016. "Three-dimensional experiment and numerical simulation of the discharge performance of sluice passageway for tidal power plant," Renewable Energy, Elsevier, vol. 92(C), pages 462-473.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. O Rourke, Fergal & Boyle, Fergal & Reynolds, Anthony, 2010. "Tidal energy update 2009," Applied Energy, Elsevier, vol. 87(2), pages 398-409, February.
    2. Li, Ying & Pan, Dong-Zi, 2017. "The ebb and flow of tidal barrage development in Zhejiang Province, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 380-389.
    3. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Francisco, Francisco & Molander, Sverker, 2012. "Simplified site-screening method for micro tidal current turbines applied in Mozambique," Renewable Energy, Elsevier, vol. 44(C), pages 414-422.
    4. Oh, Sang-Ho & Lee, Kwang Soo & Jeong, Weon-Mu, 2016. "Three-dimensional experiment and numerical simulation of the discharge performance of sluice passageway for tidal power plant," Renewable Energy, Elsevier, vol. 92(C), pages 462-473.
    5. Xia, Junqiang & Falconer, Roger A. & Lin, Binliang & Tan, Guangming, 2012. "Estimation of annual energy output from a tidal barrage using two different methods," Applied Energy, Elsevier, vol. 93(C), pages 327-336.
    6. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Cuamba, Boaventura C. & Molander, Sverker, 2012. "Renewable ocean energy in the Western Indian Ocean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4938-4950.
    7. Aggidis, G.A. & Feather, O., 2012. "Tidal range turbines and generation on the Solway Firth," Renewable Energy, Elsevier, vol. 43(C), pages 9-17.
    8. Xia, Junqiang & Falconer, Roger A. & Lin, Binliang, 2010. "Impact of different operating modes for a Severn Barrage on the tidal power and flood inundation in the Severn Estuary, UK," Applied Energy, Elsevier, vol. 87(7), pages 2374-2391, July.
    9. Carballo, R. & Iglesias, G. & Castro, A., 2009. "Numerical model evaluation of tidal stream energy resources in the Ría de Muros (NW Spain)," Renewable Energy, Elsevier, vol. 34(6), pages 1517-1524.
    10. Ma, Hengyun & Oxley, Les & Gibson, John & Li, Wen, 2010. "A survey of China's renewable energy economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 438-445, January.
    11. Hooper, Tara & Austen, Melanie, 2013. "Tidal barrages in the UK: Ecological and social impacts, potential mitigation, and tools to support barrage planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 289-298.
    12. Lewis, M.J. & Angeloudis, A. & Robins, P.E. & Evans, P.S. & Neill, S.P., 2017. "Influence of storm surge on tidal range energy," Energy, Elsevier, vol. 122(C), pages 25-36.
    13. Charlier, Roger H., 2003. "A "sleeper" awakes: tidal current power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(6), pages 515-529, December.
    14. Kim, J.W. & Ha, H.K. & Woo, S.-B. & Kim, M.-S. & Kwon, H.-K., 2021. "Unbalanced sediment transport by tidal power generation in Lake Sihwa," Renewable Energy, Elsevier, vol. 172(C), pages 1133-1144.
    15. Jamei, Elmira & Rajagopalan, Priyadarsini & Seyedmahmoudian, Mohammadmehdi & Jamei, Yashar, 2016. "Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1002-1017.
    16. Lam, Wei-Haur & Bhatia, Aalisha, 2013. "Folding tidal turbine as an innovative concept toward the new era of turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 463-473.
    17. Finkl, Charles W. & Charlier, Roger, 2009. "Electrical power generation from ocean currents in the Straits of Florida: Some environmental considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2597-2604, December.
    18. Ferreira, Rafael M. & Estefen, Segen F., 2009. "Alternative concept for tidal power plant with reservoir restrictions," Renewable Energy, Elsevier, vol. 34(4), pages 1151-1157.
    19. Rosli, R. & Norman, R. & Atlar, M., 2016. "Experimental investigations of the Hydro-Spinna turbine performance," Renewable Energy, Elsevier, vol. 99(C), pages 1227-1234.
    20. Ochieng, E.G. & Melaine, Y. & Potts, S.J. & Zuofa, T. & Egbu, C.O. & Price, A.D.F. & Ruan, X., 2014. "Future for offshore wind energy in the United Kingdom: The way forward," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 655-666.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:10:p:2243-2256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.