IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v86y2015icp737-748.html
   My bibliography  Save this article

Integrated solar thermal Brayton cycles with either one or two regenerative heat exchangers for maximum power output

Author

Listed:
  • Jansen, E.
  • Bello-Ochende, T.
  • Meyer, J.P.

Abstract

The main objective of this paper is to optimise the open-air solar-thermal Brayton cycle by considering the implementation of the second law of thermodynamics and how it relates to the design of the heat exchanging components within it. These components included one or more regenerators (in the form of cross-flow heat exchangers) and the receiver of a parabolic dish concentrator where the system heat was absorbed. The generation of entropy was considered as it was associated with the destruction of exergy or available work. The dimensions of some components were used to optimise the cycles under investigation. EGM (Entropy Generation Minimisation) was employed to optimise the system parameters by considering their influence on the total generation of entropy (destruction of exergy). Various assumptions and constraints were considered and discussed. The total entropy generation rate and irreversibilities were determined by considering the individual components and ducts of the system, as well as their respective inlet and outlet conditions. The major system parameters were evaluated as functions of the mass flow rate to allow for a proper discussion of the system performance. The performances of both systems were investigated, and characteristics were listed for both. Finally, a comparison is made to shed light on the differences in performance.

Suggested Citation

  • Jansen, E. & Bello-Ochende, T. & Meyer, J.P., 2015. "Integrated solar thermal Brayton cycles with either one or two regenerative heat exchangers for maximum power output," Energy, Elsevier, vol. 86(C), pages 737-748.
  • Handle: RePEc:eee:energy:v:86:y:2015:i:c:p:737-748
    DOI: 10.1016/j.energy.2015.04.080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215005472
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.04.080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singh, Narendra & Kaushik, S.C. & Misra, R.D., 2000. "Exergetic analysis of a solar thermal power system," Renewable Energy, Elsevier, vol. 19(1), pages 135-143.
    2. Agudelo, Andrés & Cortés, Cristóbal, 2010. "Thermal radiation and the second law," Energy, Elsevier, vol. 35(2), pages 679-691.
    3. Chen, Lingen & Zhang, Wanli & Sun, Fengrui, 2007. "Power, efficiency, entropy-generation rate and ecological optimization for a class of generalized irreversible universal heat-engine cycles," Applied Energy, Elsevier, vol. 84(5), pages 512-525, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daabo, Ahmed M. & Mahmoud, Saad & Al-Dadah, Raya K. & Ahmad, Abdalqader, 2017. "Numerical investigation of pitch value on thermal performance of solar receiver for solar powered Brayton cycle application," Energy, Elsevier, vol. 119(C), pages 523-539.
    2. Rovense, F. & Reyes-Belmonte, M.A. & González-Aguilar, J. & Amelio, M. & Bova, S. & Romero, M., 2019. "Flexible electricity dispatch for CSP plant using un-fired closed air Brayton cycle with particles based thermal energy storage system," Energy, Elsevier, vol. 173(C), pages 971-984.
    3. Daabo, Ahmed M. & Mahmoud, Saad & Al-Dadah, Raya K., 2016. "The effect of receiver geometry on the optical performance of a small-scale solar cavity receiver for parabolic dish applications," Energy, Elsevier, vol. 114(C), pages 513-525.
    4. Chenqi Tang & Lingen Chen & Huijun Feng & Wenhua Wang & Yanlin Ge, 2020. "Power Optimization of a Modified Closed Binary Brayton Cycle with Two Isothermal Heating Processes and Coupled to Variable-Temperature Reservoirs," Energies, MDPI, vol. 13(12), pages 1-21, June.
    5. Wang, Wujun & Laumert, Björn, 2018. "An axial type impinging receiver," Energy, Elsevier, vol. 162(C), pages 318-334.
    6. Mamourian, Mojtaba & Milani Shirvan, Kamel & Mirzakhanlari, Soroush, 2016. "Two phase simulation and sensitivity analysis of effective parameters on turbulent combined heat transfer and pressure drop in a solar heat exchanger filled with nanofluid by Response Surface Methodol," Energy, Elsevier, vol. 109(C), pages 49-61.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Le Roux, W.G. & Bello-Ochende, T. & Meyer, J.P., 2013. "A review on the thermodynamic optimisation and modelling of the solar thermal Brayton cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 677-690.
    2. Makhanlall, D. & Liu, L.H. & Zhang, H.C., 2010. "SLA (Second-law analysis) of transient radiative transfer processes," Energy, Elsevier, vol. 35(12), pages 5151-5160.
    3. Wang, Ruilin & Qu, Wanjun & Hong, Hui & Sun, Jie & Jin, Hongguang, 2018. "Experimental performance of 300 kWth prototype of parabolic trough collector with rotatable axis and irreversibility analysis," Energy, Elsevier, vol. 161(C), pages 595-609.
    4. Ahmadi, Mohammad H. & Amin Nabakhteh, Mohammad & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah & Bidi, Mokhtar, 2017. "Investigation and optimization of performance of nano-scale Stirling refrigerator using working fluid as Maxwell–Boltzmann gases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 337-350.
    5. Kara, Ozer & Ulgen, Koray & Hepbasli, Arif, 2008. "Exergetic assessment of direct-expansion solar-assisted heat pump systems: Review and modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1383-1401, June.
    6. Le Roux, W.G. & Bello-Ochende, T. & Meyer, J.P., 2012. "Optimum performance of the small-scale open and direct solar thermal Brayton cycle at various environmental conditions and constraints," Energy, Elsevier, vol. 46(1), pages 42-50.
    7. Sciacovelli, A. & Verda, V. & Sciubba, E., 2015. "Entropy generation analysis as a design tool—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1167-1181.
    8. Yi, Liqi & Li, Tao & Zhang, Ting, 2021. "Optimal investment selection of regional integrated energy system under multiple strategic objectives portfolio," Energy, Elsevier, vol. 218(C).
    9. Li, Yuqiang & Liu, Gang & Liu, Xianping & Liao, Shengming, 2016. "Thermodynamic multi-objective optimization of a solar-dish Brayton system based on maximum power output, thermal efficiency and ecological performance," Renewable Energy, Elsevier, vol. 95(C), pages 465-473.
    10. Anastaselos, Dimitrios & Theodoridou, Ifigeneia & Papadopoulos, Agis M. & Hegger, Manfred, 2011. "Integrated evaluation of radiative heating systems for residential buildings," Energy, Elsevier, vol. 36(7), pages 4207-4215.
    11. Zhao, Weihuan & France, David M. & Yu, Wenhua & Kim, Taeil & Singh, Dileep, 2014. "Phase change material with graphite foam for applications in high-temperature latent heat storage systems of concentrated solar power plants," Renewable Energy, Elsevier, vol. 69(C), pages 134-146.
    12. Boukelia, T.E. & Bouraoui, A. & Laouafi, A. & Djimli, S. & Kabar, Y., 2020. "3E (Energy-Exergy-Economic) comparative study of integrating wet and dry cooling systems in solar tower power plants," Energy, Elsevier, vol. 200(C).
    13. Borunda, Mónica & Jaramillo, O.A. & Dorantes, R. & Reyes, Alberto, 2016. "Organic Rankine Cycle coupling with a Parabolic Trough Solar Power Plant for cogeneration and industrial processes," Renewable Energy, Elsevier, vol. 86(C), pages 651-663.
    14. Makhanlall, Deodat & Munda, Josiah L. & Jiang, Peixue, 2013. "Radiation energy devaluation in diffusion combusting flows of natural gas," Energy, Elsevier, vol. 61(C), pages 657-663.
    15. Le Roux, W.G. & Bello-Ochende, T. & Meyer, J.P., 2011. "Operating conditions of an open and direct solar thermal Brayton cycle with optimised cavity receiver and recuperator," Energy, Elsevier, vol. 36(10), pages 6027-6036.
    16. Rovira, Antonio & Montes, María José & Valdes, Manuel & Martínez-Val, José María, 2011. "Energy management in solar thermal power plants with double thermal storage system and subdivided solar field," Applied Energy, Elsevier, vol. 88(11), pages 4055-4066.
    17. Ranjan, K.R. & Kaushik, S.C., 2014. "Thermodynamic and economic feasibility of solar ponds for various thermal applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 123-139.
    18. Chen, Lingen & Li, Jun & Sun, Fengrui, 2008. "Generalized irreversible heat-engine experiencing a complex heat-transfer law," Applied Energy, Elsevier, vol. 85(1), pages 52-60, January.
    19. Shan, Shiquan & Tian, Jialu & Chen, Binghong & Zhang, Yanwei & Zhou, Zhijun, 2023. "Theoretical and technical analysis of the photo-thermal energy cascade conversion for fuel with high-temperature combustion," Energy, Elsevier, vol. 263(PD).
    20. Zhu, Jianqin & Wang, Kai & Wu, Hongwei & Wang, Dunjin & Du, Juan & Olabi, A.G., 2015. "Experimental investigation on the energy and exergy performance of a coiled tube solar receiver," Applied Energy, Elsevier, vol. 156(C), pages 519-527.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:86:y:2015:i:c:p:737-748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.