IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v85y2015icp353-365.html
   My bibliography  Save this article

Potential savings and cost allocations for forest fuel transportation in Sweden: A country-wide study

Author

Listed:
  • Flisberg, Patrik
  • Frisk, Mikael
  • Rönnqvist, Mikael
  • Guajardo, Mario

Abstract

Bioenergy is becoming a more important energy source. An important bioenergy assortment in Sweden is given by primary forest fuels. These account for about 14% of the biofuels or about 4% of Sweden's total energy. There are large volumes of forest fuel available. However, it is a low-value commodity and it is very sensitive to logistic cost to make it profitable. In this article, we analyse alternatives to lower the logistic costs. This includes the scheduling of the harvest and chipping operations in relation to transportation, delivered mix of assortments to customers and collaboration. We study these alternatives in a case that accounts for all operations in Sweden, involving 200,000 registered transports of about 6.1 million tons of forest biomass, equivalent to 17.4 TWh of energy consumption. We define a number of instances for these alternatives and formulate an optimization model based on linear programming. The solution is obtained by using a decision support system. We identify savings potential of about 22% from changing the operations. These savings can have a large impact on the industry and, more importantly, increase the use of bioenergy. We also test cost allocation methods to spread the savings based on cooperative game theory concepts.

Suggested Citation

  • Flisberg, Patrik & Frisk, Mikael & Rönnqvist, Mikael & Guajardo, Mario, 2015. "Potential savings and cost allocations for forest fuel transportation in Sweden: A country-wide study," Energy, Elsevier, vol. 85(C), pages 353-365.
  • Handle: RePEc:eee:energy:v:85:y:2015:i:c:p:353-365
    DOI: 10.1016/j.energy.2015.03.105
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215004144
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.03.105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mafakheri, Fereshteh & Nasiri, Fuzhan, 2014. "Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions," Energy Policy, Elsevier, vol. 67(C), pages 116-126.
    2. M A Krajewska & H Kopfer & G Laporte & S Ropke & G Zaccour, 2008. "Horizontal cooperation among freight carriers: request allocation and profit sharing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(11), pages 1483-1491, November.
    3. Frisk, M. & Göthe-Lundgren, M. & Jörnsten, K. & Rönnqvist, M., 2010. "Cost allocation in collaborative forest transportation," European Journal of Operational Research, Elsevier, vol. 205(2), pages 448-458, September.
    4. Frombo, Francesco & Minciardi, Riccardo & Robba, Michela & Sacile, Roberto, 2009. "A decision support system for planning biomass-based energy production," Energy, Elsevier, vol. 34(3), pages 362-369.
    5. Joelsson, Jonas & Gustavsson, Leif, 2012. "Swedish biomass strategies to reduce CO2 emission and oil use in an EU context," Energy, Elsevier, vol. 43(1), pages 448-468.
    6. Johansson, Bengt, 1996. "Will Swedish biomass be sufficient for future transportation-fuel demands?," Energy, Elsevier, vol. 21(12), pages 1059-1069.
    7. De Meyer, Annelies & Cattrysse, Dirk & Rasinmäki, Jussi & Van Orshoven, Jos, 2014. "Methods to optimise the design and management of biomass-for-bioenergy supply chains: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 657-670.
    8. Guajardo, Mario & Rönnqvist, Mikael, 2015. "Operations research models for coalition structure in collaborative logistics," European Journal of Operational Research, Elsevier, vol. 240(1), pages 147-159.
    9. Börjesson, Pål & Gustavsson, Leif, 1996. "Regional production and utilization of biomass in Sweden," Energy, Elsevier, vol. 21(9), pages 747-764.
    10. Young, H.P., 1994. "Cost allocation," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 2, chapter 34, pages 1193-1235, Elsevier.
    11. SCHMEIDLER, David, 1969. "The nucleolus of a characteristic function game," LIDAM Reprints CORE 44, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Devlin, Ger & Klvac, Radomir & McDonnell, Kevin, 2013. "Fuel efficiency and CO2 emissions of biomass based haulage in Ireland – A case study," Energy, Elsevier, vol. 54(C), pages 55-62.
    13. Shabani, Nazanin & Sowlati, Taraneh & Ouhimmou, Mustapha & Rönnqvist, Mikael, 2014. "Tactical supply chain planning for a forest biomass power plant under supply uncertainty," Energy, Elsevier, vol. 78(C), pages 346-355.
    14. Guajardo, Mario & Jörnsten, Kurt, 2015. "Common mistakes in computing the nucleolus," European Journal of Operational Research, Elsevier, vol. 241(3), pages 931-935.
    15. P Flisberg & M Frisk & M Rönnqvist, 2012. "FuelOpt: a decision support system for forest fuel logistics," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(11), pages 1600-1612, November.
    16. Miranda, Marie Lynn & Hale, Brack, 2001. "Protecting the forest from the trees: the social costs of energy production in Sweden," Energy, Elsevier, vol. 26(9), pages 869-889.
    17. Lozano, S. & Moreno, P. & Adenso-Díaz, B. & Algaba, E., 2013. "Cooperative game theory approach to allocating benefits of horizontal cooperation," European Journal of Operational Research, Elsevier, vol. 229(2), pages 444-452.
    18. Fromen, Bastian, 1997. "Reducing the number of linear programs needed for solving the nucleolus problem of n-person game theory," European Journal of Operational Research, Elsevier, vol. 98(3), pages 626-636, May.
    19. Gunnarsson, Helene & Ronnqvist, Mikael & Lundgren, Jan T., 2004. "Supply chain modelling of forest fuel," European Journal of Operational Research, Elsevier, vol. 158(1), pages 103-123, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mario Guajardo & Kurt Jörnsten & Mikael Rönnqvist, 2016. "Constructive and blocking power in collaborative transportation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(1), pages 25-50, January.
    2. Basso, Franco & Guajardo, Mario & Varas, Mauricio, 2020. "Collaborative job scheduling in the wine bottling process," Omega, Elsevier, vol. 91(C).
    3. Kimms, A. & Kozeletskyi, I., 2016. "Core-based cost allocation in the cooperative traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 248(3), pages 910-916.
    4. Guajardo, Mario & Rönnqvist, Mikael & Flisberg, Patrik & Frisk, Mikael, 2018. "Collaborative transportation with overlapping coalitions," European Journal of Operational Research, Elsevier, vol. 271(1), pages 238-249.
    5. Malladi, Krishna Teja & Sowlati, Taraneh, 2018. "Biomass logistics: A review of important features, optimization modeling and the new trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 587-599.
    6. Gansterer, Margaretha & Hartl, Richard F., 2018. "Collaborative vehicle routing: A survey," European Journal of Operational Research, Elsevier, vol. 268(1), pages 1-12.
    7. Mobtaker, A. & Ouhimmou, M. & Audy, J.-F. & Rönnqvist, M., 2021. "A review on decision support systems for tactical logistics planning in the context of forest bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    8. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    9. Lotte Verdonck & Katrien Ramaekers & Benoît Depaire & An Caris & Gerrit K. Janssens, 2019. "Analysing the Effect of Partner Characteristics on the Performance of Horizontal Carrier Collaborations," Networks and Spatial Economics, Springer, vol. 19(2), pages 583-609, June.
    10. Guajardo, Mario & Jörnsten, Kurt, 2015. "Common mistakes in computing the nucleolus," European Journal of Operational Research, Elsevier, vol. 241(3), pages 931-935.
    11. Cleophas, Catherine & Cottrill, Caitlin & Ehmke, Jan Fabian & Tierney, Kevin, 2019. "Collaborative urban transportation: Recent advances in theory and practice," European Journal of Operational Research, Elsevier, vol. 273(3), pages 801-816.
    12. Mehmet Onur Olgun, 2022. "Collaborative airline revenue sharing game with grey demand data," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(3), pages 861-882, September.
    13. Christoph Weissbart, 2018. "Decarbonization of Power Markets under Stability and Fairness: Do They Influence Efficiency?," ifo Working Paper Series 270, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    14. Eren Akyol, Derya & De Koster, René B.M., 2018. "Determining time windows in urban freight transport: A city cooperative approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 34-50.
    15. Tatiana M. Pinho & João Paulo Coelho & Germano Veiga & A. Paulo Moreira & José Boaventura-Cunha, 2017. "A Multilayer Model Predictive Control Methodology Applied to a Biomass Supply Chain Operational Level," Complexity, Hindawi, vol. 2017, pages 1-10, July.
    16. Joen Dahlberg & Stefan Engevall & Maud Göthe-Lundgren & Kurt Jörnsten & Mikael Rönnqvist, 2019. "Incitements for transportation collaboration by cost allocation," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(4), pages 1009-1032, December.
    17. Kellner, Florian & Schneiderbauer, Miriam, 2019. "Further insights into the allocation of greenhouse gas emissions to shipments in road freight transportation: The pollution routing game," European Journal of Operational Research, Elsevier, vol. 278(1), pages 296-313.
    18. Mauricio Varas & Franco Basso & Paul Bosch & Juan Pablo Contreras & Raúl Pezoa, 2022. "A horizontal collaborative approach for planning the wine grape harvesting," Operational Research, Springer, vol. 22(5), pages 4965-4998, November.
    19. Arroyo, Federico, 2024. "Cost Allocation in Vehicle Routing Problems with Time Windows," Junior Management Science (JUMS), Junior Management Science e. V., vol. 9(1), pages 1241-1268.
    20. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:85:y:2015:i:c:p:353-365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.