IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v78y2015icp42-50.html
   My bibliography  Save this article

An off-grid hybrid PV/diesel model as a planning and design tool, incorporating dynamic and ANN modelling techniques

Author

Listed:
  • Yap, Wai Kean
  • Karri, Vishy

Abstract

Remote towns and communities are normally without access to the main electrical grid and electricity is normally generated through diesel generators. Diesel fuel costs represent a significant portion of the utilities' expenditure. Solar photovoltaic (PV) integration is an attractive solution reduces fossil fuel dependency for such communities. This study presents an off-grid hybrid PV/diesel model developed using dynamic modelling and artificial neural network (ANN) techniques. Dynamic subsystem models were developed in Simulink and ANN methods were employed for predictive modelling. Utilizing simple climate data (humidity, rain fall, ambient temperature and wind speed) and load profile as model inputs, generator and PV output powers and fuel consumption can be accurately predicted. Experimental data were used for ANN training and model validation. A comparative analysis was conducted between the Simulink model and an existing industrial design tool for a remote community in the Northern Australia. Simulation results showed that the developed model is a viable planning and analytical tool for aiding future off-grid PV-to-diesel system integration applications, with R2 values ranging from 0.92 to 0.99 and mean relative errors below 5%. Lastly, the incorporation of both dynamic and ANN modelling techniques in a single model reduces modelling complexity whilst maintaining its accuracy and ease-of-use.

Suggested Citation

  • Yap, Wai Kean & Karri, Vishy, 2015. "An off-grid hybrid PV/diesel model as a planning and design tool, incorporating dynamic and ANN modelling techniques," Renewable Energy, Elsevier, vol. 78(C), pages 42-50.
  • Handle: RePEc:eee:renene:v:78:y:2015:i:c:p:42-50
    DOI: 10.1016/j.renene.2014.12.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114009033
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.12.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dufo-López, Rodolfo & Bernal-Agustín, José L., 2008. "Multi-objective design of PV–wind–diesel–hydrogen–battery systems," Renewable Energy, Elsevier, vol. 33(12), pages 2559-2572.
    2. Bernal-Agustín, José L. & Dufo-López, Rodolfo, 2009. "Simulation and optimization of stand-alone hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2111-2118, October.
    3. Al-Alawi, Ali & M Al-Alawi, Saleh & M Islam, Syed, 2007. "Predictive control of an integrated PV-diesel water and power supply system using an artificial neural network," Renewable Energy, Elsevier, vol. 32(8), pages 1426-1439.
    4. Nfah, E.M. & Ngundam, J.M. & Tchinda, R., 2007. "Modelling of solar/diesel/battery hybrid power systems for far-north Cameroon," Renewable Energy, Elsevier, vol. 32(5), pages 832-844.
    5. Brent, Alan Colin & Rogers, David E., 2010. "Renewable rural electrification: Sustainability assessment of mini-hybrid off-grid technological systems in the African context," Renewable Energy, Elsevier, vol. 35(1), pages 257-265.
    6. Senjyu, Tomonobu & Hayashi, Daisuke & Yona, Atsushi & Urasaki, Naomitsu & Funabashi, Toshihisa, 2007. "Optimal configuration of power generating systems in isolated island with renewable energy," Renewable Energy, Elsevier, vol. 32(11), pages 1917-1933.
    7. Chen, S.X. & Gooi, H.B. & Wang, M.Q., 2013. "Solar radiation forecast based on fuzzy logic and neural networks," Renewable Energy, Elsevier, vol. 60(C), pages 195-201.
    8. Phuangpornpitak, N. & Kumar, S., 2007. "PV hybrid systems for rural electrification in Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1530-1543, September.
    9. Shaahid, S.M. & Elhadidy, M.A., 2004. "Prospects of autonomous/stand-alone hybrid (photo-voltaic + diesel + battery) power systems in commercial applications in hot regions," Renewable Energy, Elsevier, vol. 29(2), pages 165-177.
    10. Kara Togun, Necla & Baysec, Sedat, 2010. "Prediction of torque and specific fuel consumption of a gasoline engine by using artificial neural networks," Applied Energy, Elsevier, vol. 87(1), pages 349-355, January.
    11. Shaahid, S.M. & El-Amin, I., 2009. "Techno-economic evaluation of off-grid hybrid photovoltaic-diesel-battery power systems for rural electrification in Saudi Arabia--A way forward for sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 625-633, April.
    12. Dalton, G.J. & Lockington, D.A. & Baldock, T.E., 2008. "Feasibility analysis of stand-alone renewable energy supply options for a large hotel," Renewable Energy, Elsevier, vol. 33(7), pages 1475-1490.
    13. Wichert, B. & Dymond, M. & Lawrance, W. & Friese, T., 2001. "Development of a test facility for photovoltaic-diesel hybrid energy systems," Renewable Energy, Elsevier, vol. 22(1), pages 311-319.
    14. Deh Kiani, M. Kiani & Ghobadian, B. & Tavakoli, T. & Nikbakht, A.M. & Najafi, G., 2010. "Application of artificial neural networks for the prediction of performance and exhaust emissions in SI engine using ethanol- gasoline blends," Energy, Elsevier, vol. 35(1), pages 65-69.
    15. Bajpai, Prabodh & Dash, Vaishalee, 2012. "Hybrid renewable energy systems for power generation in stand-alone applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2926-2939.
    16. Hong, Chih-Ming & Ou, Ting-Chia & Lu, Kai-Hung, 2013. "Development of intelligent MPPT (maximum power point tracking) control for a grid-connected hybrid power generation system," Energy, Elsevier, vol. 50(C), pages 270-279.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rajanna, S. & Saini, R.P., 2016. "Modeling of integrated renewable energy system for electrification of a remote area in India," Renewable Energy, Elsevier, vol. 90(C), pages 175-187.
    2. Rajanna, S. & Saini, R.P., 2016. "Development of optimal integrated renewable energy model with battery storage for a remote Indian area," Energy, Elsevier, vol. 111(C), pages 803-817.
    3. Chu, Yinghao & Li, Mengying & Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2015. "Real-time prediction intervals for intra-hour DNI forecasts," Renewable Energy, Elsevier, vol. 83(C), pages 234-244.
    4. Guangqian, Du & Bekhrad, Kaveh & Azarikhah, Pouria & Maleki, Akbar, 2018. "A hybrid algorithm based optimization on modeling of grid independent biodiesel-based hybrid solar/wind systems," Renewable Energy, Elsevier, vol. 122(C), pages 551-560.
    5. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    6. Chu, Yinghao & Coimbra, Carlos F.M., 2017. "Short-term probabilistic forecasts for Direct Normal Irradiance," Renewable Energy, Elsevier, vol. 101(C), pages 526-536.
    7. Gao, Sheng & Zhang, Yanhui & Zhang, Zhiqing & Tan, Dongli & Li, Junming & Yin, Zibin & Hu, Jingyi & Zhao, Ziheng, 2023. "Multi-objective optimization of the combustion chamber geometry for a highland diesel engine fueled with diesel/n-butanol/PODEn by ANN-NSGA III," Energy, Elsevier, vol. 282(C).
    8. Chu, Yinghao & Li, Mengying & Coimbra, Carlos F.M., 2016. "Sun-tracking imaging system for intra-hour DNI forecasts," Renewable Energy, Elsevier, vol. 96(PA), pages 792-799.
    9. Rossi, Francesco & Velázquez, David, 2015. "A methodology for energy savings verification in industry with application for a CHP (combined heat and power) plant," Energy, Elsevier, vol. 89(C), pages 528-544.
    10. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed, Ammar & Pasupuleti, Jagadeesh & Khatib, Tamer & Elmenreich, Wilfried, 2015. "A review of process and operational system control of hybrid photovoltaic/diesel generator systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 436-446.
    2. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    3. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    4. Datta, Manoj & Senjyu, Tomonobu & Yona, Atsushi & Funabashi, Toshihisa, 2011. "A fuzzy based method for leveling output power fluctuations of photovoltaic-diesel hybrid power system," Renewable Energy, Elsevier, vol. 36(6), pages 1693-1703.
    5. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    6. Maheri, Alireza, 2014. "Multi-objective design optimisation of standalone hybrid wind-PV-diesel systems under uncertainties," Renewable Energy, Elsevier, vol. 66(C), pages 650-661.
    7. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    8. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    9. Tezer, Tuba & Yaman, Ramazan & Yaman, Gülşen, 2017. "Evaluation of approaches used for optimization of stand-alone hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 840-853.
    10. Maheri, Alireza, 2014. "A critical evaluation of deterministic methods in size optimisation of reliable and cost effective standalone hybrid renewable energy systems," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 159-174.
    11. Bajpai, Prabodh & Dash, Vaishalee, 2012. "Hybrid renewable energy systems for power generation in stand-alone applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2926-2939.
    12. Fazelpour, Farivar & Soltani, Nima & Rosen, Marc A., 2014. "Feasibility of satisfying electrical energy needs with hybrid systems for a medium-size hotel on Kish Island, Iran," Energy, Elsevier, vol. 73(C), pages 856-865.
    13. Fadaeenejad, M. & Radzi, M.A.M. & AbKadir, M.Z.A. & Hizam, H., 2014. "Assessment of hybrid renewable power sources for rural electrification in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 299-305.
    14. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
    15. Ramli, Makbul A.M. & Hiendro, Ayong & Twaha, Ssennoga, 2015. "Economic analysis of PV/diesel hybrid system with flywheel energy storage," Renewable Energy, Elsevier, vol. 78(C), pages 398-405.
    16. Goel, Sonali & Sharma, Renu, 2017. "Performance evaluation of stand alone, grid connected and hybrid renewable energy systems for rural application: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1378-1389.
    17. Díaz, P. & Peña, R. & Muñoz, J. & Arias, C.A. & Sandoval, D., 2011. "Field analysis of solar PV-based collective systems for rural electrification," Energy, Elsevier, vol. 36(5), pages 2509-2516.
    18. Al Busaidi, Ahmed Said & Kazem, Hussein A & Al-Badi, Abdullah H & Farooq Khan, Mohammad, 2016. "A review of optimum sizing of hybrid PV–Wind renewable energy systems in oman," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 185-193.
    19. Belouda, Malek & Jaafar, Amine & Sareni, Bruno & Roboam, Xavier & Belhadj, Jamel, 2016. "Design methodologies for sizing a battery bank devoted to a stand-alone and electronically passive wind turbine system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 144-154.
    20. Padrón, Isidro & Avila, Deivis & Marichal, Graciliano N. & Rodríguez, José A., 2019. "Assessment of Hybrid Renewable Energy Systems to supplied energy to Autonomous Desalination Systems in two islands of the Canary Archipelago," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 221-230.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:78:y:2015:i:c:p:42-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.