IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v79y2015icp385-397.html
   My bibliography  Save this article

Estimating the cost of energy access: The case of the village of Suro Craic in Timor Leste

Author

Listed:
  • Fuso Nerini, Francesco
  • Dargaville, Roger
  • Howells, Mark
  • Bazilian, Morgan

Abstract

Energy access targets at national, sub-national, and local levels, are often not specified in great detail – and tend to focus on supply. Another approach to better inform policy and investment might benefit from an indicator that focuses on the services derived from electricity access. To provide support for decision-making, this research investigates the costs of reaching different levels of energy access in rural areas, with a case study of a village in the Ainaro district of Timor Leste. Utilizing the multi-tier definition of energy access proposed in the World Bank's “Global Tracking Framework” for Sustainable Energy for All, we present results both on the cost difference of achieving different tiers of energy access, and on the comparison among selected electrification and cooking options. Results show that in the period 2010–2030 achieving the highest tier of electricity access could be as much as seventy-five times more costly than achieving the lowest one. In addition moving across tiers, least cost solutions shift from stand-alone to mini-grid and finally grid connected options as electricity access increases. Regarding cooking, moving from open fires to some of the more modern solutions has the potential to reduce overall costs over the same period.

Suggested Citation

  • Fuso Nerini, Francesco & Dargaville, Roger & Howells, Mark & Bazilian, Morgan, 2015. "Estimating the cost of energy access: The case of the village of Suro Craic in Timor Leste," Energy, Elsevier, vol. 79(C), pages 385-397.
  • Handle: RePEc:eee:energy:v:79:y:2015:i:c:p:385-397
    DOI: 10.1016/j.energy.2014.11.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214012808
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.11.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huva, Robert & Dargaville, Roger & Caine, Simon, 2012. "Prototype large-scale renewable energy system optimisation for Victoria, Australia," Energy, Elsevier, vol. 41(1), pages 326-334.
    2. Howells, M. I. & Alfstad, T. & Victor, D. G. & Goldstein, G. & Remme, U., 2005. "A model of household energy services in a low-income rural African village," Energy Policy, Elsevier, vol. 33(14), pages 1833-1851, September.
    3. Athena Roumboutsos, 2010. "Sustainability, Social Discount Rates and the Selection of Project Procurement Method," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 16(2), pages 165-174, May.
    4. Patrick Nussbaumer & Francesco Fuso Nerini & Ijeoma Onyeji & Mark Howells, 2013. "Global Insights Based on the Multidimensional Energy Poverty Index (MEPI)," Sustainability, MDPI, vol. 5(5), pages 1-17, May.
    5. Howells, Mark & Rogner, Holger & Strachan, Neil & Heaps, Charles & Huntington, Hillard & Kypreos, Socrates & Hughes, Alison & Silveira, Semida & DeCarolis, Joe & Bazillian, Morgan & Roehrl, Alexander, 2011. "OSeMOSYS: The Open Source Energy Modeling System: An introduction to its ethos, structure and development," Energy Policy, Elsevier, vol. 39(10), pages 5850-5870, October.
    6. Welsch, M. & Howells, M. & Bazilian, M. & DeCarolis, J.F. & Hermann, S. & Rogner, H.H., 2012. "Modelling elements of Smart Grids – Enhancing the OSeMOSYS (Open Source Energy Modelling System) code," Energy, Elsevier, vol. 46(1), pages 337-350.
    7. repec:kap:iaecre:v:16:y:2010:i:2:p:165-174 is not listed on IDEAS
    8. Vera, Ivan & Langlois, Lucille, 2007. "Energy indicators for sustainable development," Energy, Elsevier, vol. 32(6), pages 875-882.
    9. World Bank, 2009. "Timor-Leste," World Bank Publications - Reports 28126, The World Bank Group.
    10. Marc A Jeuland & Subhrendu K Pattanayak, 2012. "Benefits and Costs of Improved Cookstoves: Assessing the Implications of Variability in Health, Forest and Climate Impacts," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-15, February.
    11. van Ruijven, Bas J. & Schers, Jules & van Vuuren, Detlef P., 2012. "Model-based scenarios for rural electrification in developing countries," Energy, Elsevier, vol. 38(1), pages 386-397.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Setu Pelz & Shonali Pachauri & Sebastian Groh, 2018. "A critical review of modern approaches for multidimensional energy poverty measurement," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(6), November.
    2. Groissböck, Markus & Pickl, Matthias J., 2018. "Fuel-price reform to achieve climate and energy policy goals in Saudi Arabia: A multiple-scenario analysis," Utilities Policy, Elsevier, vol. 50(C), pages 1-12.
    3. Santos, Andreia & Carvalho, Ana & Barbosa-Póvoa, Ana Paula & Marques, Alexandra & Amorim, Pedro, 2019. "Assessment and optimization of sustainable forest wood supply chains – A systematic literature review," Forest Policy and Economics, Elsevier, vol. 105(C), pages 112-135.
    4. Hollands, A.F. & Daly, H., 2023. "Modelling the integrated achievement of clean cooking access and climate mitigation goals: An energy systems optimization approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    5. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
    6. Ciller, Pedro & Lumbreras, Sara, 2020. "Electricity for all: The contribution of large-scale planning tools to the energy-access problem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    7. Lammers, Katrin & Bertheau, Paul & Blechinger, Philipp, 2020. "Exploring requirements for sustainable energy supply planning with regard to climate resilience of Southeast Asian islands," Energy Policy, Elsevier, vol. 146(C).
    8. Riva, Fabio & Gardumi, Francesco & Tognollo, Annalisa & Colombo, Emanuela, 2019. "Soft-linking energy demand and optimisation models for local long-term electricity planning: An application to rural India," Energy, Elsevier, vol. 166(C), pages 32-46.
    9. Nerini, Francesco Fuso & Broad, Oliver & Mentis, Dimitris & Welsch, Manuel & Bazilian, Morgan & Howells, Mark, 2016. "A cost comparison of technology approaches for improving access to electricity services," Energy, Elsevier, vol. 95(C), pages 255-265.
    10. Nerini, Francesco Fuso & Andreoni, Antonio & Bauner, David & Howells, Mark, 2016. "Powering production. The case of the sisal fibre production in the Tanga region, Tanzania," Energy Policy, Elsevier, vol. 98(C), pages 544-556.
    11. Gill-Wiehl, A. & Miles, S. & Wu, J. & Kammen, D.M., 2022. "Beyond customer acquisition: A comprehensive review of community participation in mini grid projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    12. Lozano, Lorafe & Taboada, Evelyn B., 2020. "Demystifying the authentic attributes of electricity-poor populations: The electrification landscape of rural off-grid island communities in the Philippines," Energy Policy, Elsevier, vol. 145(C).
    13. Bertheau, Paul, 2020. "Supplying not electrified islands with 100% renewable energy based micro grids: A geospatial and techno-economic analysis for the Philippines," Energy, Elsevier, vol. 202(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Welsch, Manuel & Bazilian, Morgan & Howells, Mark & Divan, Deepak & Elzinga, David & Strbac, Goran & Jones, Lawrence & Keane, Andrew & Gielen, Dolf & Balijepalli, V.S.K. Murthy & Brew-Hammond, Abeeku , 2013. "Smart and Just Grids for sub-Saharan Africa: Exploring options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 336-352.
    2. MacCarty, Nordica A. & Bryden, Kenneth Mark, 2016. "An integrated systems model for energy services in rural developing communities," Energy, Elsevier, vol. 113(C), pages 536-557.
    3. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Krishnapriya, P.P. & Chandrasekaran, Maya & Jeuland, Marc & Pattanayak, Subhrendu K., 2021. "Do improved cookstoves save time and improve gender outcomes? Evidence from six developing countries," Energy Economics, Elsevier, vol. 102(C).
    5. George E. Halkos & Panagiotis-Stavros C. Aslanidis, 2023. "Addressing Multidimensional Energy Poverty Implications on Achieving Sustainable Development," Energies, MDPI, vol. 16(9), pages 1-30, April.
    6. Riva, Fabio & Gardumi, Francesco & Tognollo, Annalisa & Colombo, Emanuela, 2019. "Soft-linking energy demand and optimisation models for local long-term electricity planning: An application to rural India," Energy, Elsevier, vol. 166(C), pages 32-46.
    7. Lopion, Peter & Markewitz, Peter & Robinius, Martin & Stolten, Detlef, 2018. "A review of current challenges and trends in energy systems modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 156-166.
    8. Talevi, Marta & Pattanayak, Subhrendu K. & Das, Ipsita & Lewis, Jessica J. & Singha, Ashok K., 2022. "Speaking from experience: Preferences for cooking with biogas in rural India," Energy Economics, Elsevier, vol. 107(C).
    9. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2020. "Cost-effectiveness of energy efficiency investments for high renewable electricity systems," Energy, Elsevier, vol. 198(C).
    10. Paleta, Rita & Pina, André & Silva, Carlos A., 2012. "Remote Autonomous Energy Systems Project: Towards sustainability in developing countries," Energy, Elsevier, vol. 48(1), pages 431-439.
    11. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    12. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "Integrating supply and demand-side management in renewable-based energy systems," Energy, Elsevier, vol. 232(C).
    13. Alberto Vargiu & Riccardo Novo & Claudio Moscoloni & Enrico Giglio & Giuseppe Giorgi & Giuliana Mattiazzo, 2022. "An Energy Cost Assessment of Future Energy Scenarios: A Case Study on San Pietro Island," Energies, MDPI, vol. 15(13), pages 1-23, June.
    14. Enrique Cabello-Vargas & Azucena Escobedo-Izquierdo & Arturo Morales-Acevedo, 2021. "Review on Rural Energy Access Policies," International Journal of Energy Economics and Policy, Econjournals, vol. 11(5), pages 157-171.
    15. Gómez-Hernández, D.F. & Domenech, B. & Moreira, J. & Farrera, N. & López-González, A. & Ferrer-Martí, L., 2019. "Comparative evaluation of rural electrification project plans: A case study in Mexico," Energy Policy, Elsevier, vol. 129(C), pages 23-33.
    16. DeCarolis, Joseph & Daly, Hannah & Dodds, Paul & Keppo, Ilkka & Li, Francis & McDowall, Will & Pye, Steve & Strachan, Neil & Trutnevyte, Evelina & Usher, Will & Winning, Matthew & Yeh, Sonia & Zeyring, 2017. "Formalizing best practice for energy system optimization modelling," Applied Energy, Elsevier, vol. 194(C), pages 184-198.
    17. Timmerman, Jonas & Hennen, Maike & Bardow, André & Lodewijks, Pieter & Vandevelde, Lieven & Van Eetvelde, Greet, 2017. "Towards low carbon business park energy systems: A holistic techno-economic optimisation model," Energy, Elsevier, vol. 125(C), pages 747-770.
    18. Konstantin Löffler & Karlo Hainsch & Thorsten Burandt & Pao-Yu Oei & Claudia Kemfert & Christian von Hirschhausen, 2017. "Designing a Global Energy System Based on 100% Renewables for 2050: GENeSYS-MOD: An Application of the Open-Source Energy Modelling System (OSeMOSYS)," Discussion Papers of DIW Berlin 1678, DIW Berlin, German Institute for Economic Research.
    19. Göke, Leonard, 2021. "A graph-based formulation for modeling macro-energy systems," Applied Energy, Elsevier, vol. 301(C).
    20. Babonneau, Frédéric & Caramanis, Michael & Haurie, Alain, 2016. "A linear programming model for power distribution with demand response and variable renewable energy," Applied Energy, Elsevier, vol. 181(C), pages 83-95.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:79:y:2015:i:c:p:385-397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.