IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v141y2017icp389-397.html
   My bibliography  Save this article

Operation scheduling for an energy storage system considering reliability and aging

Author

Listed:
  • Kim, Wook-Won
  • Shin, Je-Seok
  • Kim, Sung-Yul
  • Kim, Jin-O.

Abstract

In this paper, the optimal scheduling for an energy storage system (ESS) is proposed for redispatching the conventional generation, considering the aspects of economy and reliability. The aim of the optimal scheduling problem is to achieve a maximum benefit including minimal fuel as well as ESS aging costs, while satisfying a specific reliability constraint. In terms of the reliability evaluation, the reliability constraint is newly formularized for ESS to have a higher state of charge (SOC) level than the minimum SOC level required to satisfy a specific reliability level over time. In addition, the life time and capacity degradation of the ESS, its major characteristics, are also formularized and considered in order to express the ESS aging cost. The optimal scheduling problem is solved by the proposed tracing method, which is based on dynamic programming and is formulated using the cumulative transition matrix. The proposed method is demonstrated using data from various generating units including renewable energy resources (RES) and an ESS, for four cases, to verify the proposed method.

Suggested Citation

  • Kim, Wook-Won & Shin, Je-Seok & Kim, Sung-Yul & Kim, Jin-O., 2017. "Operation scheduling for an energy storage system considering reliability and aging," Energy, Elsevier, vol. 141(C), pages 389-397.
  • Handle: RePEc:eee:energy:v:141:y:2017:i:c:p:389-397
    DOI: 10.1016/j.energy.2017.09.091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217316109
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.09.091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fares, Robert L. & Webber, Michael E., 2014. "A flexible model for economic operational management of grid battery energy storage," Energy, Elsevier, vol. 78(C), pages 768-776.
    2. Zhao, Haoran & Wu, Qiuwei & Hu, Shuju & Xu, Honghua & Rasmussen, Claus Nygaard, 2015. "Review of energy storage system for wind power integration support," Applied Energy, Elsevier, vol. 137(C), pages 545-553.
    3. Sarasketa-Zabala, E. & Martinez-Laserna, E. & Berecibar, M. & Gandiaga, I. & Rodriguez-Martinez, L.M. & Villarreal, I., 2016. "Realistic lifetime prediction approach for Li-ion batteries," Applied Energy, Elsevier, vol. 162(C), pages 839-852.
    4. Drury, Easan & Denholm, Paul & Sioshansi, Ramteen, 2011. "The value of compressed air energy storage in energy and reserve markets," Energy, Elsevier, vol. 36(8), pages 4959-4973.
    5. Cho, Joohyun & Kleit, Andrew N., 2015. "Energy storage systems in energy and ancillary markets: A backwards induction approach," Applied Energy, Elsevier, vol. 147(C), pages 176-183.
    6. Eddahech, Akram & Briat, Olivier & Vinassa, Jean-Michel, 2015. "Performance comparison of four lithium–ion battery technologies under calendar aging," Energy, Elsevier, vol. 84(C), pages 542-550.
    7. Wonchang Hur & Yongma Moon & Kwangsup Shin & Wooje Kim & Suchul Nam & Kijun Park, 2015. "Economic Value of Li-ion Energy Storage System in Frequency Regulation Application from Utility Firm’s Perspective in Korea," Energies, MDPI, vol. 8(6), pages 1-18, May.
    8. Abdel Monem, Mohamed & Trad, Khiem & Omar, Noshin & Hegazy, Omar & Mantels, Bart & Mulder, Grietus & Van den Bossche, Peter & Van Mierlo, Joeri, 2015. "Lithium-ion batteries: Evaluation study of different charging methodologies based on aging process," Applied Energy, Elsevier, vol. 152(C), pages 143-155.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Mingtao & Huang, Huijun & Song, Xiaoling & Peña-Mora, Feniosky & Zhang, Zhe & Chen, Jie, 2022. "Optimal sizing and operations of shared energy storage systems in distribution networks: A bi-level programming approach," Applied Energy, Elsevier, vol. 307(C).
    2. Md Masud Rana & Mohamed Atef & Md Rasel Sarkar & Moslem Uddin & GM Shafiullah, 2022. "A Review on Peak Load Shaving in Microgrid—Potential Benefits, Challenges, and Future Trend," Energies, MDPI, vol. 15(6), pages 1-17, March.
    3. Uddin, Moslem & Romlie, M.F. & Abdullah, M.F. & Tan, ChiaKwang & Shafiullah, GM & Bakar, A.H.A., 2020. "A novel peak shaving algorithm for islanded microgrid using battery energy storage system," Energy, Elsevier, vol. 196(C).
    4. Li, Haoran & Zhang, Chenghui & Sun, Bo, 2021. "Optimal design for component capacity of integrated energy system based on the active dispatch mode of multiple energy storages," Energy, Elsevier, vol. 227(C).
    5. Prajapati, Vijaykumar K. & Mahajan, Vasundhara, 2021. "Reliability assessment and congestion management of power system with energy storage system and uncertain renewable resources," Energy, Elsevier, vol. 215(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antweiler, Werner, 2021. "Microeconomic models of electricity storage: Price Forecasting, arbitrage limits, curtailment insurance, and transmission line utilization," Energy Economics, Elsevier, vol. 101(C).
    2. Mathieu, Romain & Baghdadi, Issam & Briat, Olivier & Gyan, Philippe & Vinassa, Jean-Michel, 2017. "D-optimal design of experiments applied to lithium battery for ageing model calibration," Energy, Elsevier, vol. 141(C), pages 2108-2119.
    3. Joris De Hoog & Joris Jaguemont & Mohamed Abdel-Monem & Peter Van Den Bossche & Joeri Van Mierlo & Noshin Omar, 2018. "Combining an Electrothermal and Impedance Aging Model to Investigate Thermal Degradation Caused by Fast Charging," Energies, MDPI, vol. 11(4), pages 1-15, March.
    4. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Guan, Ting & Sun, Shun & Gao, Yunzhi & Du, Chunyu & Zuo, Pengjian & Cui, Yingzhi & Zhang, Lingling & Yin, Geping, 2016. "The effect of elevated temperature on the accelerated aging of LiCoO2/mesocarbon microbeads batteries," Applied Energy, Elsevier, vol. 177(C), pages 1-10.
    6. Hemmati, Reza & Saboori, Hedayat & Saboori, Saeid, 2016. "Assessing wind uncertainty impact on short term operation scheduling of coordinated energy storage systems and thermal units," Renewable Energy, Elsevier, vol. 95(C), pages 74-84.
    7. Jeon, Wooyoung & Mo, Jung Youn, 2018. "The true economic value of supply-side energy storage in the smart grid environment – The case of Korea," Energy Policy, Elsevier, vol. 121(C), pages 101-111.
    8. Xie, Chunping & Hong, Yan & Ding, Yulong & Li, Yongliang & Radcliffe, Jonathan, 2018. "An economic feasibility assessment of decoupled energy storage in the UK: With liquid air energy storage as a case study," Applied Energy, Elsevier, vol. 225(C), pages 244-257.
    9. Chen, Yang & Hu, Mengqi & Zhou, Zhi, 2017. "A data-driven analytical approach to enable optimal emerging technologies integration in the co-optimized electricity and ancillary service markets," Energy, Elsevier, vol. 122(C), pages 613-626.
    10. Xu, Ying & Ren, Li & Zhang, Zhongping & Tang, Yuejin & Shi, Jing & Xu, Chen & Li, Jingdong & Pu, Dongsheng & Wang, Zhuang & Liu, Huajun & Chen, Lei, 2018. "Analysis of the loss and thermal characteristics of a SMES (Superconducting Magnetic Energy Storage) magnet with three practical operating conditions," Energy, Elsevier, vol. 143(C), pages 372-384.
    11. Jie Yang & Chunyu Du & Ting Wang & Yunzhi Gao & Xinqun Cheng & Pengjian Zuo & Yulin Ma & Jiajun Wang & Geping Yin & Jingying Xie & Bo Lei, 2018. "Rapid Prediction of the Open-Circuit-Voltage of Lithium Ion Batteries Based on an Effective Voltage Relaxation Model," Energies, MDPI, vol. 11(12), pages 1-15, December.
    12. Berrada, Asmae & Loudiyi, Khalid & Zorkani, Izeddine, 2016. "Valuation of energy storage in energy and regulation markets," Energy, Elsevier, vol. 115(P1), pages 1109-1118.
    13. Mathieu, Romain & Briat, Olivier & Gyan, Philippe & Vinassa, Jean-Michel, 2021. "Comparison of the impact of fast charging on the cycle life of three lithium-ion cells under several parameters of charge protocol and temperatures," Applied Energy, Elsevier, vol. 283(C).
    14. Holger C. Hesse & Michael Schimpe & Daniel Kucevic & Andreas Jossen, 2017. "Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids," Energies, MDPI, vol. 10(12), pages 1-42, December.
    15. Li, Xue & Jiang, Jiuchun & Wang, Le Yi & Chen, Dafen & Zhang, Yanru & Zhang, Caiping, 2016. "A capacity model based on charging process for state of health estimation of lithium ion batteries," Applied Energy, Elsevier, vol. 177(C), pages 537-543.
    16. Gui, Yonghao & Wei, Baoze & Li, Mingshen & Guerrero, Josep M. & Vasquez, Juan C., 2018. "Passivity-based coordinated control for islanded AC microgrid," Applied Energy, Elsevier, vol. 229(C), pages 551-561.
    17. Cheng, Meng & Sami, Saif Sabah & Wu, Jianzhong, 2017. "Benefits of using virtual energy storage system for power system frequency response," Applied Energy, Elsevier, vol. 194(C), pages 376-385.
    18. Nyong-Bassey, Bassey Etim & Giaouris, Damian & Patsios, Charalampos & Papadopoulou, Simira & Papadopoulos, Athanasios I. & Walker, Sara & Voutetakis, Spyros & Seferlis, Panos & Gadoue, Shady, 2020. "Reinforcement learning based adaptive power pinch analysis for energy management of stand-alone hybrid energy storage systems considering uncertainty," Energy, Elsevier, vol. 193(C).
    19. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    20. Tom Brijs & Daniel Huppmann & Sauleh Siddiqui & Ronnie Belmans, 2016. "Auction-Based Allocation of Shared Electricity Storage Resources through Physical Storage Rights," Discussion Papers of DIW Berlin 1566, DIW Berlin, German Institute for Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:141:y:2017:i:c:p:389-397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.