IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v76y2014icp911-919.html
   My bibliography  Save this article

Performance evaluation of direct borohydride–hydrogen peroxide fuel cells with electrocatalysts supported on multiwalled carbon nanotubes

Author

Listed:
  • Oh, Taek Hyun
  • Jang, Bosun
  • Kwon, Sejin

Abstract

The performance of direct borohydride–hydrogen peroxide fuel cells with electrocatalysts supported on multiwalled carbon nanotubes is evaluated under various conditions. Electrocatalysts are reduced on multiwalled carbon nanotubes by NaH2PO2 and electrodes are investigated using scanning electron microscopy, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and fuel cell testing. The maximum power density decreases with increasing NaBH4 concentration, likely owing to increases in NaBH4 decomposition and crossover rates and to production of increasing amounts of NaBO2. In contrast, the maximum power density increases with increasing H2O2 concentration, likely owing to increases in reactant concentrations. Moreover, increased operating temperatures improve decomposition and electrochemical reaction rates. A thin membrane increases fuel crossover, whereas a thick membrane decreases the maximum power density; consequently, the Nafion 212 membrane is the optimal thickness for use in fuel cells such as those studied here. Under selected conditions, the maximum power density is 101.9 mW/cm2. As operation time increases, fuel cell performance is degraded by oxidation and Na deposition.

Suggested Citation

  • Oh, Taek Hyun & Jang, Bosun & Kwon, Sejin, 2014. "Performance evaluation of direct borohydride–hydrogen peroxide fuel cells with electrocatalysts supported on multiwalled carbon nanotubes," Energy, Elsevier, vol. 76(C), pages 911-919.
  • Handle: RePEc:eee:energy:v:76:y:2014:i:c:p:911-919
    DOI: 10.1016/j.energy.2014.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214010573
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.09.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carton, J.G. & Lawlor, V. & Olabi, A.G. & Hochenauer, C. & Zauner, G., 2012. "Water droplet accumulation and motion in PEM (Proton Exchange Membrane) fuel cell mini-channels," Energy, Elsevier, vol. 39(1), pages 63-73.
    2. Huang, Zhen-Ming & Su, Ay & Liu, Ying-Chieh, 2014. "Development and testing of a hybrid system with a sub-kW open-cathode type PEM (proton exchange membrane) fuel cell stack," Energy, Elsevier, vol. 72(C), pages 547-553.
    3. Kim, Taegyu, 2014. "NaBH4 (sodium borohydride) hydrogen generator with a volume-exchange fuel tank for small unmanned aerial vehicles powered by a PEM (proton exchange membrane) fuel cell," Energy, Elsevier, vol. 69(C), pages 721-727.
    4. Yuan, Zhenyu & Zhang, Yufeng & Fu, Wenting & Li, Zipeng & Liu, Xiaowei, 2013. "Investigation of a small-volume direct methanol fuel cell stack for portable applications," Energy, Elsevier, vol. 51(C), pages 462-467.
    5. Prashant S. Khadke & Pitchumani Sethuraman & Palanivelu Kandasamy & Sridhar Parthasarathi & Ashok K. Shukla, 2009. "A Self-Supported Direct Borohydride-Hydrogen Peroxide Fuel Cell System," Energies, MDPI, vol. 2(2), pages 1-12, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oh, Taek Hyun, 2021. "Effect of cathode conditions on performance of direct borohydride–hydrogen peroxide fuel cell system for space exploration," Renewable Energy, Elsevier, vol. 178(C), pages 1156-1164.
    2. Kiyani, Roya & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Nitrogen doped graphene supported palladium-cobalt as a promising catalyst for methanol oxidation reaction: Synthesis, characterization and electrocatalytic performance," Energy, Elsevier, vol. 113(C), pages 1162-1173.
    3. Oh, Taek Hyun, 2021. "Gold-based bimetallic electrocatalysts supported on multiwalled carbon nanotubes for direct borohydride–hydrogen peroxide fuel cell," Renewable Energy, Elsevier, vol. 163(C), pages 930-938.
    4. Bizon, Nicu, 2019. "Hybrid power sources (HPSs) for space applications: Analysis of PEMFC/Battery/SMES HPS under unknown load containing pulses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 14-37.
    5. Stoševski, Ivan & Krstić, Jelena & Milikić, Jadranka & Šljukić, Biljana & Kačarević-Popović, Zorica & Mentus, Slavko & Miljanić, Šćepan, 2016. "Radiolitically synthesized nano Ag/C catalysts for oxygen reduction and borohydride oxidation reactions in alkaline media, for potential applications in fuel cells," Energy, Elsevier, vol. 101(C), pages 79-90.
    6. Oh, Taek Hyun & Gang, Byeong Gyu & Kim, Hyuntak & Kwon, Sejin, 2015. "Sodium borohydride hydrogen generator using Co–P/Ni foam catalysts for 200 W proton exchange membrane fuel cell system," Energy, Elsevier, vol. 90(P1), pages 1163-1170.
    7. Hosseini, M.G. & Mahmoodi, R. & Sadeghi Amjadi, M., 2017. "Carbon supported Ni1Pt1 nanocatalyst as superior electrocatalyst with increased power density in direct borohydride-hydrogen peroxide and investigation of cell impedance at different temperatures and ," Energy, Elsevier, vol. 131(C), pages 137-148.
    8. Oh, Taek Hyun & Jang, Bosun & Kwon, Sejin, 2015. "Estimating the energy density of direct borohydride–hydrogen peroxide fuel cell systems for air-independent propulsion applications," Energy, Elsevier, vol. 90(P1), pages 980-986.
    9. Yin, Xianzhi & Hou, Meiling & Zhu, Kai & Ye, Ke & Yan, Jun & Cao, Dianxue & Zhang, Dongming & Yao, Jiaxin & Wang, Guiling, 2022. "PdCu nanoparticles modified free-standing reduced graphene oxide framework as a highly efficient catalyst for direct borohydride-hydrogen peroxide fuel cell," Renewable Energy, Elsevier, vol. 201(P1), pages 160-170.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oh, Taek Hyun & Jang, Bosun & Kwon, Sejin, 2015. "Estimating the energy density of direct borohydride–hydrogen peroxide fuel cell systems for air-independent propulsion applications," Energy, Elsevier, vol. 90(P1), pages 980-986.
    2. Oh, Taek Hyun & Gang, Byeong Gyu & Kim, Hyuntak & Kwon, Sejin, 2015. "Sodium borohydride hydrogen generator using Co–P/Ni foam catalysts for 200 W proton exchange membrane fuel cell system," Energy, Elsevier, vol. 90(P1), pages 1163-1170.
    3. Oh, Taek Hyun, 2016. "A formic acid hydrogen generator using Pd/C3N4 catalyst for mobile proton exchange membrane fuel cell systems," Energy, Elsevier, vol. 112(C), pages 679-685.
    4. Alipour Najmi, Ali & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Investigation of NaOH concentration effect in injected fuel on the performance of passive direct methanol alkaline fuel cell with modified cation exchange membrane," Energy, Elsevier, vol. 94(C), pages 589-599.
    5. An, Myung-Gi & Mehmood, Asad & Hwang, Jinyeon & Ha, Heung Yong, 2016. "A novel method of methanol concentration control through feedback of the amplitudes of output voltage fluctuations for direct methanol fuel cells," Energy, Elsevier, vol. 100(C), pages 217-226.
    6. Chen, Ben & Wang, Jun & Yang, Tianqi & Cai, Yonghua & Zhang, Caizhi & Chan, Siew Hwa & Yu, Yi & Tu, Zhengkai, 2016. "Carbon corrosion and performance degradation mechanism in a proton exchange membrane fuel cell with dead-ended anode and cathode," Energy, Elsevier, vol. 106(C), pages 54-62.
    7. Wang, Luwen & He, Mingyan & Hu, Yue & Zhang, Yufeng & Liu, Xiaowei & Wang, Gaofeng, 2015. "A “4-cell” modular passive DMFC (direct methanol fuel cell) stack for portable applications," Energy, Elsevier, vol. 82(C), pages 229-235.
    8. Kim, Taegyu, 2014. "NaBH4 (sodium borohydride) hydrogen generator with a volume-exchange fuel tank for small unmanned aerial vehicles powered by a PEM (proton exchange membrane) fuel cell," Energy, Elsevier, vol. 69(C), pages 721-727.
    9. Borghei, Maryam & Scotti, Gianmario & Kanninen, Petri & Weckman, Timo & Anoshkin, Ilya V. & Nasibulin, Albert G. & Franssila, Sami & Kauppinen, Esko I. & Kallio, Tanja & Ruiz, Virginia, 2014. "Enhanced performance of a silicon microfabricated direct methanol fuel cell with PtRu catalysts supported on few-walled carbon nanotubes," Energy, Elsevier, vol. 65(C), pages 612-620.
    10. Deng, Huichao & Zhang, Xuelin & Ma, Zezhong & Chen, Hailong & Sun, Qiu & Zhang, Yufeng & Liu, Xiaowei, 2014. "A micro passive direct methanol fuel cell with high performance via plasma electrolytic oxidation on aluminum-based substrate," Energy, Elsevier, vol. 78(C), pages 149-153.
    11. Alipour Moghaddam, Jafar & Parnian, Mohammad Javad & Rowshanzamir, Soosan, 2018. "Preparation, characterization, and electrochemical properties investigation of recycled proton exchange membrane for fuel cell applications," Energy, Elsevier, vol. 161(C), pages 699-709.
    12. Abdin, Z. & Webb, C.J. & Gray, E.MacA., 2016. "PEM fuel cell model and simulation in Matlab–Simulink based on physical parameters," Energy, Elsevier, vol. 116(P1), pages 1131-1144.
    13. Santos, D.M.F. & Sequeira, C.A.C., 2011. "Sodium borohydride as a fuel for the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3980-4001.
    14. Parnian, Mohammad Javad & Rowshanzamir, Soosan & Gashoul, Fatemeh, 2017. "Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel ," Energy, Elsevier, vol. 125(C), pages 614-628.
    15. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    16. Oh, Taek Hyun, 2021. "Effect of cathode conditions on performance of direct borohydride–hydrogen peroxide fuel cell system for space exploration," Renewable Energy, Elsevier, vol. 178(C), pages 1156-1164.
    17. Asadollahi, Arash & Esmaeeli, Asghar, 2018. "Simulation of condensation and liquid break-up on a micro-object with upper and lower movable walls using Lattice Boltzmann Method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 498(C), pages 33-49.
    18. Okur, Osman & İyigün Karadağ, Çiğdem & Boyacı San, Fatma Gül & Okumuş, Emin & Behmenyar, Gamze, 2013. "Optimization of parameters for hot-pressing manufacture of membrane electrode assembly for PEM (polymer electrolyte membrane fuel cells) fuel cell," Energy, Elsevier, vol. 57(C), pages 574-580.
    19. Salva, J. Antonio & Iranzo, Alfredo & Rosa, Felipe & Tapia, Elvira, 2016. "Validation of cell voltage and water content in a PEM (polymer electrolyte membrane) fuel cell model using neutron imaging for different operating conditions," Energy, Elsevier, vol. 101(C), pages 100-112.
    20. Abdollahzadeh, M. & Ribeirinha, P. & Boaventura, M. & Mendes, A., 2018. "Three-dimensional modeling of PEMFC with contaminated anode fuel," Energy, Elsevier, vol. 152(C), pages 939-959.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:76:y:2014:i:c:p:911-919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.