IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v25y2000i12p1245-1256.html
   My bibliography  Save this article

An application of the degree-hours method to estimate the residential heating energy requirement and fuel consumption in Istanbul

Author

Listed:
  • Durmayaz, Ahmet
  • Kadıoǧlu, Mikdat
  • Şen, Zekai

Abstract

Cold season heating energy requirements in buildings can be estimated with the degree-hours method based on human comfort levels and available meteorological temperature records for a given area. Such estimations are especially significant for cities where fossil fuel consumption must be eliminated in favor of clean energy alternatives to reduce air pollution. This paper considers the city of Istanbul in Turkey and presents a detailed account for practical energy requirements and fuel consumption calculations.

Suggested Citation

  • Durmayaz, Ahmet & Kadıoǧlu, Mikdat & Şen, Zekai, 2000. "An application of the degree-hours method to estimate the residential heating energy requirement and fuel consumption in Istanbul," Energy, Elsevier, vol. 25(12), pages 1245-1256.
  • Handle: RePEc:eee:energy:v:25:y:2000:i:12:p:1245-1256
    DOI: 10.1016/S0360-5442(00)00040-2
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544200000402
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(00)00040-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Satman, A & Yalcinkaya, N, 1999. "Heating and cooling degree-hours for Turkey," Energy, Elsevier, vol. 24(10), pages 833-840.
    2. Şen, Zekai & Kadiogl̂u, Mikdat, 1998. "Heating degree–days for arid regions," Energy, Elsevier, vol. 23(12), pages 1089-1094.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kenisarin, Murat & Kenisarina, Kamola, 2007. "Energy saving potential in the residential sector of Uzbekistan," Energy, Elsevier, vol. 32(8), pages 1319-1325.
    2. Oktay, Z. & Coskun, C. & Dincer, I., 2011. "A new approach for predicting cooling degree-hours and energy requirements in buildings," Energy, Elsevier, vol. 36(8), pages 4855-4863.
    3. Szoplik, Jolanta, 2015. "Forecasting of natural gas consumption with artificial neural networks," Energy, Elsevier, vol. 85(C), pages 208-220.
    4. Bulut, Hüsamettin & Büyükalaca, Orhan & YIlmaz, Tuncay, 2001. "Bin weather data for Turkey," Applied Energy, Elsevier, vol. 70(2), pages 135-155, October.
    5. Zhang, L.Y. & Jin, L.W. & Wang, Z.N. & Zhang, J.Y. & Liu, X. & Zhang, L.H., 2017. "Effects of wall configuration on building energy performance subject to different climatic zones of China," Applied Energy, Elsevier, vol. 185(P2), pages 1565-1573.
    6. Büyükalaca, Orhan & Bulut, Hüsamettin, 2004. "Detailed weather data for the provinces covered by the Southeastern Anatolia Project (GAP) of Turkey," Applied Energy, Elsevier, vol. 77(2), pages 187-204, February.
    7. Sarak, H & Satman, A, 2003. "The degree-day method to estimate the residential heating natural gas consumption in Turkey: a case study," Energy, Elsevier, vol. 28(9), pages 929-939.
    8. Liu, Long & Zhao, Jing & Liu, Xin & Wang, Zhaoxia, 2014. "Energy consumption comparison analysis of high energy efficiency office buildings in typical climate zones of China and U.S. based on correction model," Energy, Elsevier, vol. 65(C), pages 221-232.
    9. Jean Gaston Tamba & Salom Ndjakomo Essiane & Emmanuel Flavian Sapnken & Francis Djanna Koffi & Jean Luc Nsouand l & Bozidar Soldo & Donatien Njomo, 2018. "Forecasting Natural Gas: A Literature Survey," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 216-249.
    10. Lee, Wen-Shing, 2010. "Benchmarking the energy performance for cooling purposes in buildings using a novel index-total performance of energy for cooling purposes," Energy, Elsevier, vol. 35(1), pages 50-54.
    11. D'Amico, A. & Ciulla, G. & Panno, D. & Ferrari, S., 2019. "Building energy demand assessment through heating degree days: The importance of a climatic dataset," Applied Energy, Elsevier, vol. 242(C), pages 1285-1306.
    12. Dombaycı, Ö. Altan, 2009. "Degree-days maps of Turkey for various base temperatures," Energy, Elsevier, vol. 34(11), pages 1807-1812.
    13. Büyükalaca, Orhan & Bulut, Hüsamettin & YIlmaz, Tuncay, 2001. "Analysis of variable-base heating and cooling degree-days for Turkey," Applied Energy, Elsevier, vol. 69(4), pages 269-283, August.
    14. Özyurt, Ömer & Bakirci, Kadir & Erdoğan, Sadık & Yilmaz, Mehmet, 2009. "Bin weather data for the provinces of the Eastern Anatolia in Turkey," Renewable Energy, Elsevier, vol. 34(5), pages 1319-1332.
    15. Mehmet Bilgili, 2023. "Time series forecasting on cooling degree-days (CDD) using SARIMA model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2569-2592, September.
    16. Szoplik, Jolanta, 2016. "Improving the natural gas transporting based on the steady state simulation results," Energy, Elsevier, vol. 109(C), pages 105-116.
    17. Shakouri G., Hamed, 2019. "The share of cooling electricity in global warming: Estimation of the loop gain for the positive feedback," Energy, Elsevier, vol. 179(C), pages 747-761.
    18. Khuram Pervez Amber & Muhammad Waqar Aslam & Faraz Ikram & Anila Kousar & Hafiz Muhammad Ali & Naveed Akram & Kamran Afzal & Haroon Mushtaq, 2018. "Heating and Cooling Degree-Days Maps of Pakistan," Energies, MDPI, vol. 11(1), pages 1-12, January.
    19. Verbai, Zoltán & Lakatos, Ákos & Kalmár, Ferenc, 2014. "Prediction of energy demand for heating of residential buildings using variable degree day," Energy, Elsevier, vol. 76(C), pages 780-787.
    20. Chien-Cheng Jung & Nai-Tzu Chen & Ying-Fang Hsia & Nai-Yun Hsu & Huey-Jen Su, 2021. "Influence of Indoor Temperature Exposure on Emergency Department Visits Due to Infectious and Non-Infectious Respiratory Diseases for Older People," IJERPH, MDPI, vol. 18(10), pages 1-11, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:25:y:2000:i:12:p:1245-1256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.