IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v67y2014icp74-80.html
   My bibliography  Save this article

An improved method of Lambertian CCD-camera radiation flux measurement based on SMARTS (simple model of the atmospheric radiative transfer of sunshine) to reduce spectral errors

Author

Listed:
  • Xiao, Gang
  • Guo, Kaikai
  • Xu, Weiping
  • Ni, Mingjiang
  • Luo, Zhongyang
  • Cen, Kefa

Abstract

A Lambertian CCD-camera method is convenient to measure concentrating radiation fluxes, where a crucial factor, a calibration factor, always varies with spectra and brings errors. In this paper, a new calibration method is proposed based on spectral normalization calculation and tries to reduce spectral errors in Lambertian CCD-camera measurement. The calibration factor for AM1.5 is standardized over a transmittance range by matching gray values of photos to readings of calorimeter. A spectrum is calculated by SMARTS (simple model of the atmospheric radiative transfer of sunshine) according to the local time, latitude and longitude. A calibration factor is adjusted by calculated spectral offsets accordingly. Therefore an absolute radiation flux distribution is obtained by a gray value captured by the CCD-camera without calorimeter. Calculated results indicate that spectral irradiance between 700 and 800 nm dominates gray values on the target for solar radiation flux measurement. The offsets are increasing continuously from AM1 to AM5, which are validated by experimental results. The difference between measured and calculated calibration factors is 11%, which fits to the results of error estimate. These indicate that the improved method was feasible and reliable to measure concentrating radiation fluxes easily.

Suggested Citation

  • Xiao, Gang & Guo, Kaikai & Xu, Weiping & Ni, Mingjiang & Luo, Zhongyang & Cen, Kefa, 2014. "An improved method of Lambertian CCD-camera radiation flux measurement based on SMARTS (simple model of the atmospheric radiative transfer of sunshine) to reduce spectral errors," Energy, Elsevier, vol. 67(C), pages 74-80.
  • Handle: RePEc:eee:energy:v:67:y:2014:i:c:p:74-80
    DOI: 10.1016/j.energy.2013.12.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213011250
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.12.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ulmer, Steffen & Lüpfert, Eckhard & Pfänder, Markus & Buck, Reiner, 2004. "Calibration corrections of solar tower flux density measurements," Energy, Elsevier, vol. 29(5), pages 925-933.
    2. Ballestrín, J. & Monterreal, R., 2004. "Hybrid heat flux measurement system for solar central receiver evaluation," Energy, Elsevier, vol. 29(5), pages 915-924.
    3. Gueymard, Christian A., 2005. "Interdisciplinary applications of a versatile spectral solar irradiance model: A review," Energy, Elsevier, vol. 30(9), pages 1551-1576.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. García-Domingo, B. & Aguilera, J. & de la Casa, J. & Fuentes, M., 2014. "Modelling the influence of atmospheric conditions on the outdoor real performance of a CPV (Concentrated Photovoltaic) module," Energy, Elsevier, vol. 70(C), pages 239-250.
    2. Gan, Di & Zhu, Peiwang & Xu, Haoran & Xie, Xiangyu & Chai, Fengyuan & Gong, Jueyuan & Li, Jiasong & Xiao, Gang, 2023. "Experimental and simulation study of Mn–Fe particles in a controllable-flow particle solar receiver for high-temperature thermochemical energy storage," Energy, Elsevier, vol. 282(C).
    3. Song, Jifeng & Yang, Genben & Wang, Haiyu & Niu, Yisen & Hou, Hongjuan & Su, Ying & Wang, Qian & Zou, Zubing, 2022. "Influence of sunshape and optical error on spillover of concentrated flux in solar thermal power tower plant," Energy, Elsevier, vol. 256(C).
    4. Chen, Jinli & Xiao, Gang & Xu, Haoran & Zhou, Xin & Yang, Jiamin & Ni, Mingjiang & Cen, Kefa, 2022. "Experiment and dynamic simulation of a solar tower collector system for power generation," Renewable Energy, Elsevier, vol. 196(C), pages 946-958.
    5. Garrido, Jorge & Aichmayer, Lukas & Wang, Wujun & Laumert, Björn, 2017. "Characterization of the KTH high-flux solar simulator combining three measurement methods," Energy, Elsevier, vol. 141(C), pages 2091-2099.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kexin Zhang & Ying Su & Haiyu Wang & Qian Wang & Kai Wang & Yisen Niu & Jifeng Song, 2022. "Highly Concentrated Solar Flux of Large Fresnel Lens Using CCD Camera-Based Method," Sustainability, MDPI, vol. 14(17), pages 1-16, September.
    2. Lee, Hyunjin & Chai, Kwankyo & Kim, Jongkyu & Lee, Sangnam & Yoon, Hwanki & Yu, Changkyun & Kang, Yongheack, 2014. "Optical performance evaluation of a solar furnace by measuring the highly concentrated solar flux," Energy, Elsevier, vol. 66(C), pages 63-69.
    3. Guilong Dai & Ying Zhuang & Xiaoyu Wang & Xue Chen & Chuang Sun & Shenghua Du, 2022. "Experimental Investigation on the Vector Characteristics of Concentrated Solar Radiation Flux Map," Energies, MDPI, vol. 16(1), pages 1-15, December.
    4. Song, Jifeng & Yang, Genben & Wang, Haiyu & Niu, Yisen & Hou, Hongjuan & Su, Ying & Wang, Qian & Zou, Zubing, 2022. "Influence of sunshape and optical error on spillover of concentrated flux in solar thermal power tower plant," Energy, Elsevier, vol. 256(C).
    5. Chen, Chenshun & Duan, Qiuhua & Feng, Yanxiao & Wang, Julian & Ghaeili Ardabili, Neda & Wang, Nan & Hosseini, Seyed Morteza & Shen, Chao, 2023. "Reconstruction of narrowband solar radiation for enhanced spectral selectivity in building-integrated solar energy simulations," Renewable Energy, Elsevier, vol. 219(P2).
    6. Psiloglou, B.E. & Kambezidis, H.D. & Kaskaoutis, D.G. & Karagiannis, D. & Polo, J.M., 2020. "Comparison between MRM simulations, CAMS and PVGIS databases with measured solar radiation components at the Methoni station, Greece," Renewable Energy, Elsevier, vol. 146(C), pages 1372-1391.
    7. Roldán, M.I. & Fernández-Reche, J. & Ballestrín, J., 2016. "Computational fluid dynamics evaluation of the operating conditions for a volumetric receiver installed in a solar tower," Energy, Elsevier, vol. 94(C), pages 844-856.
    8. Ruiz-Arias, José A., 2022. "Spectral integration of clear-sky atmospheric transmittance: Review and worldwide performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    9. Cucumo, M. & De Rosa, A. & Ferraro, V. & Kaliakatsos, D. & Marinelli, V., 2010. "Correlations of direct solar luminous efficacy for all sky, clear sky and intermediate sky conditions and comparisons with experimental data of five localities," Renewable Energy, Elsevier, vol. 35(10), pages 2143-2156.
    10. Roldán, M.I. & Smirnova, O. & Fend, T. & Casas, J.L. & Zarza, E., 2014. "Thermal analysis and design of a volumetric solar absorber depending on the porosity," Renewable Energy, Elsevier, vol. 62(C), pages 116-128.
    11. Rodríguez-Sánchez, M.R. & Leray, C. & Toutant, A. & Ferriere, A. & Olalde, G., 2019. "Development of a new method to estimate the incident solar flux on central receivers from deteriorated heliostats," Renewable Energy, Elsevier, vol. 130(C), pages 182-190.
    12. Ballestrín, J. & Casanova, M. & Monterreal, R. & Fernández-Reche, J. & Setien, E. & Rodríguez, J. & Galindo, J. & Barbero, F.J. & Batlles, F.J., 2019. "Simplifying the measurement of high solar irradiance on receivers. Application to solar tower plants," Renewable Energy, Elsevier, vol. 138(C), pages 551-561.
    13. Kambezidis, H.D. & Psiloglou, B.E. & Karagiannis, D. & Dumka, U.C. & Kaskaoutis, D.G., 2017. "Meteorological Radiation Model (MRM v6.1): Improvements in diffuse radiation estimates and a new approach for implementation of cloud products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 616-637.
    14. Kambezidis, H.D. & Psiloglou, B.E. & Karagiannis, D. & Dumka, U.C. & Kaskaoutis, D.G., 2016. "Recent improvements of the Meteorological Radiation Model for solar irradiance estimates under all-sky conditions," Renewable Energy, Elsevier, vol. 93(C), pages 142-158.
    15. Xiao, Gang & Guo, Kaikai & Luo, Zhongyang & Ni, Mingjiang & Zhang, Yanmei & Wang, Cheng, 2014. "Simulation and experimental study on a spiral solid particle solar receiver," Applied Energy, Elsevier, vol. 113(C), pages 178-188.
    16. Kudish, Avraham I. & Evseev, Efim G., 2012. "UVB irradiance and atmospheric optical depth at the Dead Sea basin, Israel: Measurements and modeling," Renewable Energy, Elsevier, vol. 48(C), pages 344-349.
    17. Marzo, Aitor & Ferrada, Pablo & Beiza, Felipe & Besson, Pierre & Alonso-Montesinos, Joaquín & Ballestrín, Jesús & Román, Roberto & Portillo, Carlos & Escobar, Rodrigo & Fuentealba, Edward, 2018. "Standard or local solar spectrum? Implications for solar technologies studies in the Atacama desert," Renewable Energy, Elsevier, vol. 127(C), pages 871-882.
    18. Taramona, S. & Gallo, A. & González-Camarillo, H. & Minio Paluello, G. & Briongos, J.V. & Gómez-Hernández, J., 2024. "Beam-down linear Fresnel reflector prototype: Construction and first tests," Renewable Energy, Elsevier, vol. 220(C).
    19. Cucumo, M. & De Rosa, A. & Ferraro, V. & Kaliakatsos, D. & Marinelli, V., 2008. "Correlations of global and diffuse solar luminous efficacy for all sky conditions and comparisons with experimental data of five localities," Renewable Energy, Elsevier, vol. 33(9), pages 2036-2047.
    20. Mlatho, J.S.P. & McPherson, M. & Mawire, A. & Van den Heetkamp, R.J.J., 2010. "Determination of the spatial extent of the focal point of a parabolic dish reflector using a red laser diode," Renewable Energy, Elsevier, vol. 35(9), pages 1982-1990.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:67:y:2014:i:c:p:74-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.