IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v65y2014icp590-595.html
   My bibliography  Save this article

Research on characteristics of varying conditions for nozzle governing stage based on dimensional analysis

Author

Listed:
  • Xu, Jian-qun
  • Ma, Lin
  • Sun, You-yuan
  • Cao, Zu-qing

Abstract

In this paper, thermodynamic calculations of nozzle governing stage are taken based on APROS (Advanced Process Simulation), and verify through the comparison of experiment table data. The influence of partial admission on pressure ratio within the governing stage is also analyzed. The results show that partial admission not only leads to partial admission losses, but also makes an impact on pressure ratio, enthalpy and reaction degree, in turn, causes the change of efficiency. Then, the nozzle pressure ratio after the full-open valve and semi-open valve respectively, is expressed as a function of flow ratio based on dimensional analysis. This paper presents a method of thermodynamic calculation for nozzle governing stage. Comparing with the results calculated through APROS and discussing the change of pressure ratio and reaction degree, it shows that the method can reflect the influence of partial admission on pressure ratio exactly, and further improve the accuracy of existing thermodynamic calculation.

Suggested Citation

  • Xu, Jian-qun & Ma, Lin & Sun, You-yuan & Cao, Zu-qing, 2014. "Research on characteristics of varying conditions for nozzle governing stage based on dimensional analysis," Energy, Elsevier, vol. 65(C), pages 590-595.
  • Handle: RePEc:eee:energy:v:65:y:2014:i:c:p:590-595
    DOI: 10.1016/j.energy.2013.11.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213010062
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.11.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ge, T.S. & Dai, Y.J. & Wang, R.Z. & Li, Y., 2008. "Experimental investigation on a one-rotor two-stage rotary desiccant cooling system," Energy, Elsevier, vol. 33(12), pages 1807-1815.
    2. Gibson, Chanel Ann & Meybodi, Mehdi Aghaei & Behnia, Masud, 2013. "Optimisation and selection of a steam turbine for a large scale industrial CHP (combined heat and power) system under Australia's carbon price," Energy, Elsevier, vol. 61(C), pages 291-307.
    3. Rajoo, Srithar & Romagnoli, Alessandro & Martinez-Botas, Ricardo F., 2012. "Unsteady performance analysis of a twin-entry variable geometry turbocharger turbine," Energy, Elsevier, vol. 38(1), pages 176-189.
    4. Jonshagen, K. & Genrup, M., 2010. "Improved load control for a steam cycle combined heat and power plant," Energy, Elsevier, vol. 35(4), pages 1694-1700.
    5. Kim, T.S & Park, H.J & Ro, S.T, 2001. "Characteristics of transient operation of a dual-pressure bottoming system for the combined cycle power plant," Energy, Elsevier, vol. 26(10), pages 905-918.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Jianxi & Liu, Pei & Li, Zheng, 2020. "Hybrid modelling and digital twin development of a steam turbine control stage for online performance monitoring," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Lei Zhang & Zongliang Qiao & Bingsen Hei & Youfei Tang & Shasha Liu, 2022. "Optimization of Steam Distribution Mode for Turbine Units Based on Governing Valve Characteristic Modeling," Energies, MDPI, vol. 15(23), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Serrano, José Ramón & Piqueras, Pedro & De la Morena, Joaquín & Gómez-Vilanova, Alejandro & Guilain, Stéphane, 2021. "Methodological analysis of variable geometry turbine technology impact on the performance of highly downsized spark-ignition engines," Energy, Elsevier, vol. 215(PB).
    2. De Antonellis, Stefano & Joppolo, Cesare Maria & Molinaroli, Luca & Pasini, Alberto, 2012. "Simulation and energy efficiency analysis of desiccant wheel systems for drying processes," Energy, Elsevier, vol. 37(1), pages 336-345.
    3. Sphaier, L.A. & Nóbrega, C.E.L., 2012. "Parametric analysis of components effectiveness on desiccant cooling system performance," Energy, Elsevier, vol. 38(1), pages 157-166.
    4. Zhao, Rongchao & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong & Wu, Yonghui, 2018. "Characterization of two-stage turbine system under steady and pulsating flow conditions," Energy, Elsevier, vol. 148(C), pages 407-423.
    5. Ruivo, Celestino R. & Goldsworthy, Mark & Intini, Manuel, 2014. "Interpolation methods to predict the influence of inlet airflow states on desiccant wheel performance at low regeneration temperature," Energy, Elsevier, vol. 68(C), pages 765-772.
    6. Panaras, G. & Mathioulakis, E. & Belessiotis, V., 2011. "Solid desiccant air-conditioning systems – Design parameters," Energy, Elsevier, vol. 36(5), pages 2399-2406.
    7. Tu, Rang & Liu, Xiao-Hua & Jiang, Yi, 2014. "Performance analysis of a two-stage desiccant cooling system," Applied Energy, Elsevier, vol. 113(C), pages 1562-1574.
    8. Serrano, José Ramón & Olmeda, Pablo & Tiseira, Andrés & García-Cuevas, Luis Miguel & Lefebvre, Alain, 2013. "Theoretical and experimental study of mechanical losses in automotive turbochargers," Energy, Elsevier, vol. 55(C), pages 888-898.
    9. Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    10. Santori, G. & Frazzica, A. & Freni, A. & Galieni, M. & Bonaccorsi, L. & Polonara, F. & Restuccia, G., 2013. "Optimization and testing on an adsorption dishwasher," Energy, Elsevier, vol. 50(C), pages 170-176.
    11. Eicker, Ursula & Schneider, Dietrich & Schumacher, Jürgen & Ge, Tianshu & Dai, Yanjun, 2010. "Operational experiences with solar air collector driven desiccant cooling systems," Applied Energy, Elsevier, vol. 87(12), pages 3735-3747, December.
    12. Wang, Hanwei & Luo, Kai & Huang, Chuang & Zou, Aihong & Li, Daijin & Qin, Kan, 2022. "Numerical investigation of partial admission losses in radial inflow turbines," Energy, Elsevier, vol. 239(PA).
    13. Rambhad, Kishor S. & Walke, Pramod V. & Tidke, D.J., 2016. "Solid desiccant dehumidification and regeneration methods—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 73-83.
    14. Zhang, Qunli & Li, Yanxin & Zhang, Qiuyue & Ma, Fengge & Lü, Xiaoshu, 2024. "Application of deep dehumidification technology in low-humidity industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    15. Han, H.J. & Jeon, Y.I. & Lim, S.H. & Kim, W.W. & Chen, K., 2010. "New developments in illumination, heating and cooling technologies for energy-efficient buildings," Energy, Elsevier, vol. 35(6), pages 2647-2653.
    16. Qin, Shiyue & Chang, Shiyan, 2017. "Modeling, thermodynamic and techno-economic analysis of coke production process with waste heat recovery," Energy, Elsevier, vol. 141(C), pages 435-450.
    17. Serrano, José Ramón & Arnau, Francisco José & García-Cuevas, Luis Miguel & Inhestern, Lukas Benjamin, 2019. "An innovative losses model for efficiency map fitting of vaneless and variable vaned radial turbines extrapolating towards extreme off-design conditions," Energy, Elsevier, vol. 180(C), pages 626-639.
    18. Kojok, Farah & Fardoun, Farouk & Younes, Rafic & Outbib, Rachid, 2016. "Hybrid cooling systems: A review and an optimized selection scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 57-80.
    19. Amit Kumar & Avadhesh Yadav, 2017. "Experimental investigation of solar-powered desiccant cooling system by using composite desiccant “CaCl2/jute”," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(4), pages 1279-1292, August.
    20. La, D. & Dai, Y.J. & Li, Y. & Tang, Z.Y. & Ge, T.S. & Wang, R.Z., 2013. "An experimental investigation on the integration of two-stage dehumidification and regenerative evaporative cooling," Applied Energy, Elsevier, vol. 102(C), pages 1218-1228.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:65:y:2014:i:c:p:590-595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.