IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v64y2014icp734-746.html
   My bibliography  Save this article

Optimization mathematical model for the detailed design of air cooled heat exchangers

Author

Listed:
  • Manassaldi, Juan I.
  • Scenna, Nicolás J.
  • Mussati, Sergio F.

Abstract

This paper presents a disjunctive mathematical model for the optimal design of air cooled heat exchangers. The model involves seven discrete decisions which are related to the selection of the type of the finned tube, number of tube rows, number of tube per row, number of passes, fins per unit length, mean fin thickness and the type of the flow regime. Each discrete decision is modeled using disjunctions, boolean variables and logical propositions. The main continuous decisions are: fan diameter, bundle width, tube length, pressure drops and velocities in both sides of the ACHE, heat transfer area, fan power consumption. Then, the resulting generalized disjunctive programming model is reformulated as a mixed integer non-linear programming, implemented in GAMS (general algebraic modeling system) and solved using a branch-and-bound method. The proposed model was successfully verified by comparing the obtained output results with different designs taken from the literature. Then, the model is solved to obtain the optimal designs corresponding to the following optimization criteria: a) minimization the total annual cost which includes investment (heat transfer area) and operating cost (fan power consumption), b) minimization the heat transfer area and c) minimization the fan power consumption. Obtained optimal and sub-optimal designs are compared in detail.

Suggested Citation

  • Manassaldi, Juan I. & Scenna, Nicolás J. & Mussati, Sergio F., 2014. "Optimization mathematical model for the detailed design of air cooled heat exchangers," Energy, Elsevier, vol. 64(C), pages 734-746.
  • Handle: RePEc:eee:energy:v:64:y:2014:i:c:p:734-746
    DOI: 10.1016/j.energy.2013.09.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213008281
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.09.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Doodman, A.R. & Fesanghary, M. & Hosseini, R., 2009. "A robust stochastic approach for design optimization of air cooled heat exchangers," Applied Energy, Elsevier, vol. 86(7-8), pages 1240-1245, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martín, Mariano, 2015. "Optimal annual operation of the dry cooling system of a concentrated solar energy plant in the south of Spain," Energy, Elsevier, vol. 84(C), pages 774-782.
    2. Zhang, Haitian & Feng, Xiao & Wang, Yufei, 2018. "Comparison and evaluation of air cooling and water cooling in resource consumption and economic performance," Energy, Elsevier, vol. 154(C), pages 157-167.
    3. Wang, Yanhong & Cao, Lihua & Li, Xingcan & Wang, Jiaxing & Hu, Pengfei & Li, Bo & Li, Yong, 2020. "A novel thermodynamic method and insight of heat transfer characteristics on economizer for supercritical thermal power plant," Energy, Elsevier, vol. 191(C).
    4. Wang, Chaoyang & Liu, Ming & Zhao, Yongliang & Wang, Zhu & Yan, Junjie, 2018. "Thermodynamics analysis on a heat exchanger unit during the transient processes based on the second law," Energy, Elsevier, vol. 165(PB), pages 622-633.
    5. Luo, Xianglong & Yi, Zhitong & Zhang, Bingjian & Mo, Songping & Wang, Chao & Song, Mengjie & Chen, Ying, 2017. "Mathematical modelling and optimization of the liquid separation condenser used in organic Rankine cycle," Applied Energy, Elsevier, vol. 185(P2), pages 1309-1323.
    6. Yang, Tingting & Wang, Wei & Zeng, Deliang & Liu, Jizhen & Cui, Can, 2017. "Closed-loop optimization control on fan speed of air-cooled steam condenser units for energy saving and rapid load regulation," Energy, Elsevier, vol. 135(C), pages 394-404.
    7. Taleghani, S. Taslimi & Sorin, M. & Gaboury, S., 2021. "Thermo-economic analysis of heat-driven ejector system for cooling smelting process exhaust gas," Energy, Elsevier, vol. 220(C).
    8. Klemeš, Jiří Jaromír & Wang, Qiu-Wang & Varbanov, Petar Sabev & Zeng, Min & Chin, Hon Huin & Lal, Nathan Sanjay & Li, Nian-Qi & Wang, Bohong & Wang, Xue-Chao & Walmsley, Timothy Gordon, 2020. "Heat transfer enhancement, intensification and optimisation in heat exchanger network retrofit and operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    9. Lira-Barragán, Luis Fernando & Ponce-Ortega, José María & Serna-González, Medardo & El-Halwagi, Mahmoud M., 2014. "Optimal design of process energy systems integrating sustainable considerations," Energy, Elsevier, vol. 76(C), pages 139-160.
    10. Lozano-Santamaria, Federico & Luceño, José A. & Martín, Mariano & Macchietto, Sandro, 2020. "Stochastic modelling of sandstorms affecting the optimal operation and cleaning scheduling of air coolers in concentrated solar power plants," Energy, Elsevier, vol. 213(C).
    11. Wang, Yufei & Zhan, Shihui & Feng, Xiao, 2015. "Optimization of velocity for energy saving and mitigating fouling in a crude oil preheat train with fixed network structure," Energy, Elsevier, vol. 93(P2), pages 1478-1488.
    12. Luceño, José A. & Martín, Mariano, 2018. "Two-step optimization procedure for the conceptual design of A-frame systems for solar power plants," Energy, Elsevier, vol. 165(PB), pages 483-500.
    13. Kler, Aleksandr M. & Potanina, Yulia M. & Marinchenko, Andrey Y., 2020. "Co-optimization of thermal power plant flowchart, thermodynamic cycle parameters, and design parameters of components," Energy, Elsevier, vol. 193(C).
    14. Kler, Alexandr M. & Potanina, Yulia M., 2017. "An approach to optimization of the choice of boiler steel grades as to a mixed-integer programming problem," Energy, Elsevier, vol. 127(C), pages 128-135.
    15. Tian, Jiayang & Wang, Yufei & Feng, Xiao, 2016. "Simultaneous optimization of flow velocity and cleaning schedule for mitigating fouling in refinery heat exchanger networks," Energy, Elsevier, vol. 109(C), pages 1118-1129.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Xianglong & Yi, Zhitong & Zhang, Bingjian & Mo, Songping & Wang, Chao & Song, Mengjie & Chen, Ying, 2017. "Mathematical modelling and optimization of the liquid separation condenser used in organic Rankine cycle," Applied Energy, Elsevier, vol. 185(P2), pages 1309-1323.
    2. Wong, L.T. & Mui, K.W. & Guan, Y., 2010. "Shower water heat recovery in high-rise residential buildings of Hong Kong," Applied Energy, Elsevier, vol. 87(2), pages 703-709, February.
    3. Manjunath, K. & Kaushik, S.C., 2014. "Second law thermodynamic study of heat exchangers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 348-374.
    4. Varun & Siddhartha, 2010. "Thermal performance optimization of a flat plate solar air heater using genetic algorithm," Applied Energy, Elsevier, vol. 87(5), pages 1793-1799, May.
    5. Sanaye, Sepehr & Hajabdollahi, Hassan, 2010. "Thermal-economic multi-objective optimization of plate fin heat exchanger using genetic algorithm," Applied Energy, Elsevier, vol. 87(6), pages 1893-1902, June.
    6. Khaled, Mahmoud & Harambat, Fabien & Hage, Hicham El & Peerhossaini, Hassan, 2011. "Spatial optimization of an underhood cooling module – Towards an innovative control approach," Applied Energy, Elsevier, vol. 88(11), pages 3841-3849.
    7. Ahmadigorji, Masoud & Amjady, Nima, 2015. "Optimal dynamic expansion planning of distribution systems considering non-renewable distributed generation using a new heuristic double-stage optimization solution approach," Applied Energy, Elsevier, vol. 156(C), pages 655-665.
    8. Khaled, Mahmoud & Mangi, Fareed & Hage, Hisham El & Harambat, Fabien & Peerhossaini, Hassan, 2012. "Fan air flow analysis and heat transfer enhancement of vehicle underhood cooling system – Towards a new control approach for fuel consumption reduction," Applied Energy, Elsevier, vol. 91(1), pages 439-450.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:64:y:2014:i:c:p:734-746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.