IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v17y1992i5p477-484.html
   My bibliography  Save this article

Performance of a low- temperature NH3 H2O absorption-refrigeration system

Author

Listed:
  • Rogdakis, E.D.
  • Antonopoulos, K.A.

Abstract

Conventional absorption-refrigeration systems cannot produce temperatures below −20 °C. We have studied a two-stage NH3 H2O absorption-refrigeration system, which may be used to produce refrigeration temperatures as low as −70 °C. This system operates at three pressure levels so that the heat released by the high-pressure condenser and by the medium-pressure absorber are rejected to the ambient, while heat released by the low-pressure absorber is received at the medium-pressure evaporator. A method and a corresponding computer code have been developed to simulate the operation of the proposed system. Employing this method, we predict for 10 °C ambient temperature that the theoretical coefficient of performance ranges from 20 to 65%, while the lowest temperatures range from −70 to −30 °C; the corresponding theoretical refrigeration load ranges from 300 to 1100 kJ/kg of refrigerant produced in the generator.

Suggested Citation

  • Rogdakis, E.D. & Antonopoulos, K.A., 1992. "Performance of a low- temperature NH3 H2O absorption-refrigeration system," Energy, Elsevier, vol. 17(5), pages 477-484.
  • Handle: RePEc:eee:energy:v:17:y:1992:i:5:p:477-484
    DOI: 10.1016/0360-5442(92)90083-C
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/036054429290083C
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0360-5442(92)90083-C?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ebrahimi, Armin & Ghorbani, Bahram & Ziabasharhagh, Masoud, 2020. "Introducing a novel integrated cogeneration system of power and cooling using stored liquefied natural gas as a cryogenic energy storage system," Energy, Elsevier, vol. 206(C).
    2. Chen, Yi & Han, Wei & Jin, Hongguang, 2015. "An absorption–compression refrigeration system driven by a mid-temperature heat source for low-temperature applications," Energy, Elsevier, vol. 91(C), pages 215-225.
    3. Said, S.A.M. & El-Shaarawi, M.A.I. & Siddiqui, M.U., 2013. "Intermittent absorption refrigeration system equipped with an economizer," Energy, Elsevier, vol. 61(C), pages 332-344.
    4. Chen, Yi & Han, Wei & Jin, Hongguang, 2017. "Proposal and analysis of a novel heat-driven absorption–compression refrigeration system at low temperatures," Applied Energy, Elsevier, vol. 185(P2), pages 2106-2116.
    5. Xu, Hao & Xu, Xiafan & Chen, Liubiao & Guo, Jia & Wang, Junjie, 2022. "A novel cryogenic condensation system combined with gas turbine with low carbon emission for volatile compounds recovery," Energy, Elsevier, vol. 248(C).
    6. Siddiqui, M.U. & Said, S.A.M., 2015. "A review of solar powered absorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 93-115.
    7. Xu, Qingyu & Lu, Ding & Chen, Gaofei & Guo, Hao & Dong, Xueqiang & Zhao, Yanxing & Shen, Jun & Gong, Maoqiong, 2019. "Experimental study on an absorption refrigeration system driven by temperature-distributed heat sources," Energy, Elsevier, vol. 170(C), pages 471-479.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:17:y:1992:i:5:p:477-484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.