IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v60y2013icp517-526.html
   My bibliography  Save this article

Cyclic steady state performance of adsorption chiller with low regeneration temperature zeolite

Author

Listed:
  • Qian, Suxin
  • Gluesenkamp, Kyle
  • Hwang, Yunho
  • Radermacher, Reinhard
  • Chun, Ho-Hwan

Abstract

Adsorption chillers are capable of utilizing inexpensive or free low grade thermal energy such as waste heat and concentrated solar thermal energy. Recently developed low regeneration temperature working pairs allow adsorption chillers to be driven by even lower temperature sources such as engine coolant and flat plate solar collectors. In this work, synthetic zeolite/water was implemented into a 3 kW adsorption chiller test facility driven by hot water at 70 °C. The zeolite was coated onto two fin-and-tube heat exchangers, with heat recovery employed between the two. Cyclic steady state parametric studies were experimentally conducted to evaluate the chiller's performance, resulting in a cooling coefficient of performance (COP) ranging from 0.1 to 0.6 at different operating conditions. Its performance was compared with published values for other low regeneration temperature working pairs. The physical limitations of the synthetic zeolite revealed by parametric study results were then discussed. A novel operating control strategy was proposed based on the unique characteristics of synthetic zeolite. In addition, a physics-based COP prediction model was derived to predict the performance of the chiller under equilibrium loading, and was validated by the experiment results. This analytical expression can be used to estimate the cyclic steady state performance for future studies.

Suggested Citation

  • Qian, Suxin & Gluesenkamp, Kyle & Hwang, Yunho & Radermacher, Reinhard & Chun, Ho-Hwan, 2013. "Cyclic steady state performance of adsorption chiller with low regeneration temperature zeolite," Energy, Elsevier, vol. 60(C), pages 517-526.
  • Handle: RePEc:eee:energy:v:60:y:2013:i:c:p:517-526
    DOI: 10.1016/j.energy.2013.08.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213007287
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.08.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boubakri, A. & Arsalane, M. & Yous, B. & Ali-Moussa, L. & Pons, M. & Meunier, F. & Guilleminot, J.J., 1992. "Experimental study of adsorptive solar-powered ice makers in Agadir (Morocco)—2. Influences of meteorological parameters," Renewable Energy, Elsevier, vol. 2(1), pages 15-21.
    2. Boubakri, A. & Arsalane, M. & Yous, B. & Ali-Moussa, L. & Pons, M. & Meunier, F. & Guilleminot, J.J., 1992. "Experimental study of adsorptive solar-powered ice makers in Agadir (Morocco)—1. Performance in actual site," Renewable Energy, Elsevier, vol. 2(1), pages 7-13.
    3. La, D. & Li, Y. & Dai, Y.J. & Ge, T.S. & Wang, R.Z., 2012. "Development of a novel rotary desiccant cooling cycle with isothermal dehumidification and regenerative evaporative cooling using thermodynamic analysis method," Energy, Elsevier, vol. 44(1), pages 778-791.
    4. Li, S. & Wu, J.Y., 2009. "Theoretical research of a silica gel-water adsorption chiller in a micro combined cooling, heating and power (CCHP) system," Applied Energy, Elsevier, vol. 86(6), pages 958-967, June.
    5. Myat, Aung & Kim Choon, Ng & Thu, Kyaw & Kim, Young-Deuk, 2013. "Experimental investigation on the optimal performance of Zeolite–water adsorption chiller," Applied Energy, Elsevier, vol. 102(C), pages 582-590.
    6. Saha, B.B & Akisawa, A & Kashiwagi, T, 2001. "Solar/waste heat driven two-stage adsorption chiller: the prototype," Renewable Energy, Elsevier, vol. 23(1), pages 93-101.
    7. Sumathy, K. & Zhongfu, Li, 1999. "Experiments with solar-powered adsorption ice-maker," Renewable Energy, Elsevier, vol. 16(1), pages 704-707.
    8. Li, M & Wang, R.Z & Xu, Y.X & Wu, J.Y & Dieng, A.O, 2002. "Experimental study on dynamic performance analysis of a flat-plate solar solid-adsorption refrigeration for ice maker," Renewable Energy, Elsevier, vol. 27(2), pages 211-221.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qian, Suxin & Wang, Yao & Xu, Shijie & Chen, Yanliang & Yuan, Lifen & Yu, Jianlin, 2021. "Cascade utilization of low-grade thermal energy by coupled elastocaloric power and cooling cycle," Applied Energy, Elsevier, vol. 298(C).
    2. Hamdy, Mohamed & Askalany, Ahmed A. & Harby, K. & Kora, Nader, 2015. "An overview on adsorption cooling systems powered by waste heat from internal combustion engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1223-1234.
    3. Gordeeva, Larisa & Frazzica, Andrea & Sapienza, Alessio & Aristov, Yuri & Freni, Angelo, 2014. "Adsorption cooling utilizing the “LiBr/silica – ethanol” working pair: Dynamic optimization of the adsorber/heat exchanger unit," Energy, Elsevier, vol. 75(C), pages 390-399.
    4. Kyle R. Gluesenkamp & Andrea Frazzica & Andreas Velte & Steven Metcalf & Zhiyao Yang & Mina Rouhani & Corey Blackman & Ming Qu & Eric Laurenz & Angeles Rivero-Pacho & Sam Hinmers & Robert Critoph & Ma, 2020. "Experimentally Measured Thermal Masses of Adsorption Heat Exchangers," Energies, MDPI, vol. 13(5), pages 1-21, March.
    5. Mahesh, A., 2017. "Solar collectors and adsorption materials aspects of cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1300-1312.
    6. Qian, Suxin & Yuan, Lifen & Yu, Jianlin & Yan, Gang, 2017. "Numerical modeling of an active elastocaloric regenerator refrigerator with phase transformation kinetics and the matching principle for materials selection," Energy, Elsevier, vol. 141(C), pages 744-756.
    7. Girnik, Ilya S. & Aristov, Yuri I., 2016. "Dynamic optimization of adsorptive chillers: The “AQSOA™-FAM-Z02 – Water” working pair," Energy, Elsevier, vol. 106(C), pages 13-22.
    8. Alklaibi, A.M. & Lior, N., 2021. "Waste heat utilization from internal combustion engines for power augmentation and refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    9. Qian, Suxin & Yu, Jianlin & Yan, Gang, 2017. "A review of regenerative heat exchange methods for various cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 535-550.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahesh, A., 2017. "Solar collectors and adsorption materials aspects of cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1300-1312.
    2. Sah, Ramesh P. & Choudhury, Biplab & Das, Ranadip K., 2015. "A review on adsorption cooling systems with silica gel and carbon as adsorbents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 123-134.
    3. Goyal, Parash & Baredar, Prashant & Mittal, Arvind & Siddiqui, Ameenur. R., 2016. "Adsorption refrigeration technology – An overview of theory and its solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1389-1410.
    4. Fernandes, M.S. & Brites, G.J.V.N. & Costa, J.J. & Gaspar, A.R. & Costa, V.A.F., 2014. "Review and future trends of solar adsorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 102-123.
    5. Wang, S.G. & Wang, R.Z., 2005. "Recent developments of refrigeration technology in fishing vessels," Renewable Energy, Elsevier, vol. 30(4), pages 589-600.
    6. Sah, Ramesh P. & Choudhury, Biplab & Das, Ranadip K., 2016. "A review on low grade heat powered adsorption cooling systems for ice production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 109-120.
    7. Choudhury, B. & Chatterjee, P.K. & Sarkar, J.P., 2010. "Review paper on solar-powered air-conditioning through adsorption route," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2189-2195, October.
    8. Shabir, Faizan & Sultan, Muhammad & Miyazaki, Takahiko & Saha, Bidyut B. & Askalany, Ahmed & Ali, Imran & Zhou, Yuguang & Ahmad, Riaz & Shamshiri, Redmond R., 2020. "Recent updates on the adsorption capacities of adsorbent-adsorbate pairs for heat transformation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    9. Wang, D.C. & Li, Y.H. & Li, D. & Xia, Y.Z. & Zhang, J.P., 2010. "A review on adsorption refrigeration technology and adsorption deterioration in physical adsorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 344-353, January.
    10. Habib, Khairul & Choudhury, Biplab & Chatterjee, Pradip Kumar & Saha, Bidyut Baran, 2013. "Study on a solar heat driven dual-mode adsorption chiller," Energy, Elsevier, vol. 63(C), pages 133-141.
    11. Alghoul, M.A. & Sulaiman, M.Y. & Sopian, K. & Azmi, B.Z., 2009. "Performance of a dual-purpose solar continuous adsorption system," Renewable Energy, Elsevier, vol. 34(3), pages 920-927.
    12. Hassan, H.Z. & Mohamad, A.A., 2012. "A review on solar-powered closed physisorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2516-2538.
    13. Jung-Gil Lee & Kyung Jin Bae & Oh Kyung Kwon, 2020. "Performance Investigation of a Two-Bed Type Adsorption Chiller with Various Adsorbents," Energies, MDPI, vol. 13(10), pages 1-16, May.
    14. N’Tsoukpoe, Kokouvi Edem & Yamegueu, Daniel & Bassole, Justin, 2014. "Solar sorption refrigeration in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 318-335.
    15. Wang, Dechang & Zhang, Jipeng & Yang, Qirong & Li, Na & Sumathy, K., 2014. "Study of adsorption characteristics in silica gel–water adsorption refrigeration," Applied Energy, Elsevier, vol. 113(C), pages 734-741.
    16. Zhao, Yongling & Hu, Eric & Blazewicz, Antoni, 2012. "Dynamic modelling of an activated carbon–methanol adsorption refrigeration tube with considerations of interfacial convection and transient pressure process," Applied Energy, Elsevier, vol. 95(C), pages 276-284.
    17. Sapienza, Alessio & Gullì, Giuseppe & Calabrese, Luigi & Palomba, Valeria & Frazzica, Andrea & Brancato, Vincenza & La Rosa, Davide & Vasta, Salvatore & Freni, Angelo & Bonaccorsi, Lucio & Cacciola, G, 2016. "An innovative adsorptive chiller prototype based on 3 hybrid coated/granular adsorbers," Applied Energy, Elsevier, vol. 179(C), pages 929-938.
    18. Wu, J.Y. & Li, S., 2009. "Study on cyclic characteristics of silica gel–water adsorption cooling system driven by variable heat source," Energy, Elsevier, vol. 34(11), pages 1955-1962.
    19. Boubakri, A., 2006. "Performance of an adsorptive solar ice maker operating with a single double function heat exchanger (evaporator/condenser)," Renewable Energy, Elsevier, vol. 31(11), pages 1799-1812.
    20. Boubakri, A, 2003. "A new conception of an adsorptive solar-powered ice maker," Renewable Energy, Elsevier, vol. 28(5), pages 831-842.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:60:y:2013:i:c:p:517-526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.