IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v59y2013icp642-651.html
   My bibliography  Save this article

Calculation of the power loss coefficient of steam turbine as a part of the cogeneration plant

Author

Listed:
  • Urošević, Dragan
  • Gvozdenac, Dušan
  • Grković, Vojin

Abstract

A cogeneration plant operates under very variable conditions within a reporting period (usually one year) and this frustrates the achievement of the high standards stipulated by the EU Directive from 2004. Taking into consideration these difficulties, one needs to start with the decomposition of the cogeneration plant in order to determine a virtual part of the plant that can meet the requirements of the Directive on the basis of conducted measurements and calculations. In this way, the plant can be partially qualified as eligible for economic and financial benefits.

Suggested Citation

  • Urošević, Dragan & Gvozdenac, Dušan & Grković, Vojin, 2013. "Calculation of the power loss coefficient of steam turbine as a part of the cogeneration plant," Energy, Elsevier, vol. 59(C), pages 642-651.
  • Handle: RePEc:eee:energy:v:59:y:2013:i:c:p:642-651
    DOI: 10.1016/j.energy.2013.07.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213005975
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.07.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gvozdenac, Dušan & Menke, Christoph & Vallikul, Pumyos & Petrović, Jovan & Gvozdenac, Branka, 2009. "Assessment of potential for natural gas-based cogeneration in Thailand," Energy, Elsevier, vol. 34(4), pages 465-475.
    2. Frangopoulos, Christos A., 2012. "A method to determine the power to heat ratio, the cogenerated electricity and the primary energy savings of cogeneration systems after the European Directive," Energy, Elsevier, vol. 45(1), pages 52-61.
    3. Verbruggen, Aviel, 2007. "What's Needed Next to Refine the EU Directive on Cogeneration Regulation," The Electricity Journal, Elsevier, vol. 20(2), pages 63-70, March.
    4. Grković, Vojin, 1997. "Energy-efficiency improvements by joint operation of two DH systems using old condensing turbines," Energy, Elsevier, vol. 22(11), pages 1099-1102.
    5. Grković, Vojin, 1990. "Selection of the optimal extraction pressure for steam from a condensation-extraction turbine," Energy, Elsevier, vol. 15(5), pages 459-465.
    6. Verbruggen, Aviel, 2008. "The merit of cogeneration: Measuring and rewarding performance," Energy Policy, Elsevier, vol. 36(8), pages 3059-3066, August.
    7. Klaassen, R.E. & Patel, M.K., 2013. "District heating in the Netherlands today: A techno-economic assessment for NGCC-CHP (Natural Gas Combined Cycle combined heat and power)," Energy, Elsevier, vol. 54(C), pages 63-73.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. da Silva, Julio Augusto Mendes & Santos, José Joaquim Conceição Soares & Carvalho, Monica & de Oliveira, Silvio, 2017. "On the thermoeconomic and LCA methods for waste and fuel allocation in multiproduct systems," Energy, Elsevier, vol. 127(C), pages 775-785.
    2. Gvozdenac, Dušan & Urošević, Branka Gvozdenac & Menke, Christoph & Urošević, Dragan & Bangviwat, Athikom, 2017. "High efficiency cogeneration: CHP and non-CHP energy," Energy, Elsevier, vol. 135(C), pages 269-278.
    3. Tamburini, A. & Cipollina, A. & Micale, G. & Piacentino, A., 2016. "CHP (combined heat and power) retrofit for a large MED-TVC (multiple effect distillation along with thermal vapour compression) desalination plant: high efficiency assessment for different design opti," Energy, Elsevier, vol. 115(P3), pages 1548-1559.
    4. Marco Gambini & Michela Vellini & Tommaso Stilo & Michele Manno & Sara Bellocchi, 2019. "High-Efficiency Cogeneration Systems: The Case of the Paper Industry in Italy," Energies, MDPI, vol. 12(3), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gvozdenac, Dušan & Urošević, Branka Gvozdenac & Menke, Christoph & Urošević, Dragan & Bangviwat, Athikom, 2017. "High efficiency cogeneration: CHP and non-CHP energy," Energy, Elsevier, vol. 135(C), pages 269-278.
    2. Tamburini, A. & Cipollina, A. & Micale, G. & Piacentino, A., 2016. "CHP (combined heat and power) retrofit for a large MED-TVC (multiple effect distillation along with thermal vapour compression) desalination plant: high efficiency assessment for different design opti," Energy, Elsevier, vol. 115(P3), pages 1548-1559.
    3. Verbruggen, Aviel & Dewallef, Pierre & Quoilin, Sylvain & Wiggin, Michael, 2013. "Unveiling the mystery of Combined Heat & Power (cogeneration)," Energy, Elsevier, vol. 61(C), pages 575-582.
    4. Jiang, Kai & Yan, Xiaohe & Liu, Nian & Wang, Peng, 2022. "Energy trade-offs in coupled ICM and electricity market under dynamic carbon emission intensity," Energy, Elsevier, vol. 260(C).
    5. Yu Liu & Shan Gao & Xin Zhao & Chao Zhang & Ningyu Zhang, 2017. "Coordinated Operation and Control of Combined Electricity and Natural Gas Systems with Thermal Storage," Energies, MDPI, vol. 10(7), pages 1-25, July.
    6. Capuder, Tomislav & Mancarella, Pierluigi, 2014. "Techno-economic and environmental modelling and optimization of flexible distributed multi-generation options," Energy, Elsevier, vol. 71(C), pages 516-533.
    7. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    8. Im, Yong-Hoon & Liu, Jie, 2018. "Feasibility study on the low temperature district heating and cooling system with bi-lateral heat trades model," Energy, Elsevier, vol. 153(C), pages 988-999.
    9. Tataraki, Kalliopi G. & Kavvadias, Konstantinos C. & Maroulis, Zacharias B., 2018. "A systematic approach to evaluate the economic viability of Combined Cooling Heating and Power systems over conventional technologies," Energy, Elsevier, vol. 148(C), pages 283-295.
    10. Soltero, V.M. & Chacartegui, R. & Ortiz, C. & Velázquez, R., 2016. "Evaluation of the potential of natural gas district heating cogeneration in Spain as a tool for decarbonisation of the economy," Energy, Elsevier, vol. 115(P3), pages 1513-1532.
    11. Mundada, Aishwarya S. & Shah, Kunal K. & Pearce, J.M., 2016. "Levelized cost of electricity for solar photovoltaic, battery and cogen hybrid systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 692-703.
    12. Comodi, Gabriele & Rossi, Mosè, 2016. "Energy versus economic effectiveness in CHP (combined heat and power) applications: Investigation on the critical role of commodities price, taxation and power grid mix efficiency," Energy, Elsevier, vol. 109(C), pages 124-136.
    13. Kaewpradap, Amornrat & Jugjai, Sumrerng, 2019. "Experimental study of flame stability enhancement on lean premixed combustion of a synthetic natural gas in Thailand," Energy, Elsevier, vol. 188(C).
    14. Espirito Santo, Denilson Boschiero do & Gallo, Waldyr Luiz Ribeiro, 2017. "Utilizing primary energy savings and exergy destruction to compare centralized thermal plants and cogeneration/trigeneration systems," Energy, Elsevier, vol. 120(C), pages 785-795.
    15. Oduro, Richard A. & Taylor, Peter G., 2023. "Future pathways for energy networks: A review of international experiences in high income countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    16. Udomsri, Seksan & Martin, Andrew R. & Martin, Viktoria, 2011. "Thermally driven cooling coupled with municipal solid waste-fired power plant: Application of combined heat, cooling and power in tropical urban areas," Applied Energy, Elsevier, vol. 88(5), pages 1532-1542, May.
    17. Do, Truong Xuan & Lim, Young-il & Yeo, Heejung & Lee, Uen-do & Choi, Young-tai & Song, Jae-hun, 2014. "Techno-economic analysis of power plant via circulating fluidized-bed gasification from woodchips," Energy, Elsevier, vol. 70(C), pages 547-560.
    18. Kılkış, Şiir & Kılkış, Birol, 2019. "An urbanization algorithm for districts with minimized emissions based on urban planning and embodied energy towards net-zero exergy targets," Energy, Elsevier, vol. 179(C), pages 392-406.
    19. Verbruggen, Aviel, 2008. "Renewable and nuclear power: A common future?," Energy Policy, Elsevier, vol. 36(11), pages 4036-4047, November.
    20. Erixno, Oon & Rahim, Nasrudin Abd, 2020. "A techno-environmental assessment of hybrid photovoltaic-thermal based combined heat and power system on a residential home," Renewable Energy, Elsevier, vol. 156(C), pages 1186-1202.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:59:y:2013:i:c:p:642-651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.